Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for e...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
2016
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-209295 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-2092952016-11-13T03:32:16Z Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension Günnel, Andreas Herzog, Roland Optimalsteuerung Elastizität quasi-Newton-Verfahren Mehrgitter-Vorkonditionierung Optimierung Finite-Elemente-Methode Technische Universität Chemnitz Publikationsfonds optimal control finite-strain elasticity quasi-Newton method multigrid preconditioning optimization finite element method Technische Universität Chemnitz Publication fund ddc:518 Optimalsteuerung Elastizität Optimierung Finite-Elemente-Methode Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance. Universitätsbibliothek Chemnitz Frontiers Research Foundation, Technische Universität Chemnitz, Fakultät für Mathematik 2016-09-01 doc-type:article application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 urn:nbn:de:bsz:ch1-qucosa-209295 issn:2297-4687 http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc Front. Appl. Math. Stat. 2:4. doi: 10.3389/fams.2016.00004 eng |
collection |
NDLTD |
language |
English |
format |
Article |
sources |
NDLTD |
topic |
Optimalsteuerung Elastizität quasi-Newton-Verfahren Mehrgitter-Vorkonditionierung Optimierung Finite-Elemente-Methode Technische Universität Chemnitz Publikationsfonds optimal control finite-strain elasticity quasi-Newton method multigrid preconditioning optimization finite element method Technische Universität Chemnitz Publication fund ddc:518 Optimalsteuerung Elastizität Optimierung Finite-Elemente-Methode |
spellingShingle |
Optimalsteuerung Elastizität quasi-Newton-Verfahren Mehrgitter-Vorkonditionierung Optimierung Finite-Elemente-Methode Technische Universität Chemnitz Publikationsfonds optimal control finite-strain elasticity quasi-Newton method multigrid preconditioning optimization finite element method Technische Universität Chemnitz Publication fund ddc:518 Optimalsteuerung Elastizität Optimierung Finite-Elemente-Methode Günnel, Andreas Herzog, Roland Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
description |
Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance. |
author2 |
Frontiers Research Foundation, |
author_facet |
Frontiers Research Foundation, Günnel, Andreas Herzog, Roland |
author |
Günnel, Andreas Herzog, Roland |
author_sort |
Günnel, Andreas |
title |
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
title_short |
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
title_full |
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
title_fullStr |
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
title_full_unstemmed |
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension |
title_sort |
optimal control problems in finite-strain elasticity by inner pressure and fiber tension |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2016 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc |
work_keys_str_mv |
AT gunnelandreas optimalcontrolproblemsinfinitestrainelasticitybyinnerpressureandfibertension AT herzogroland optimalcontrolproblemsinfinitestrainelasticitybyinnerpressureandfibertension |
_version_ |
1718392976091119616 |