Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension

Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for e...

Full description

Bibliographic Details
Main Authors: Günnel, Andreas, Herzog, Roland
Other Authors: Frontiers Research Foundation,
Format: Article
Language:English
Published: Universitätsbibliothek Chemnitz 2016
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295
http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-209295
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-2092952016-11-13T03:32:16Z Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension Günnel, Andreas Herzog, Roland Optimalsteuerung Elastizität quasi-Newton-Verfahren Mehrgitter-Vorkonditionierung Optimierung Finite-Elemente-Methode Technische Universität Chemnitz Publikationsfonds optimal control finite-strain elasticity quasi-Newton method multigrid preconditioning optimization finite element method Technische Universität Chemnitz Publication fund ddc:518 Optimalsteuerung Elastizität Optimierung Finite-Elemente-Methode Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance. Universitätsbibliothek Chemnitz Frontiers Research Foundation, Technische Universität Chemnitz, Fakultät für Mathematik 2016-09-01 doc-type:article application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295 urn:nbn:de:bsz:ch1-qucosa-209295 issn:2297-4687 http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc Front. Appl. Math. Stat. 2:4. doi: 10.3389/fams.2016.00004 eng
collection NDLTD
language English
format Article
sources NDLTD
topic Optimalsteuerung
Elastizität
quasi-Newton-Verfahren
Mehrgitter-Vorkonditionierung
Optimierung
Finite-Elemente-Methode
Technische Universität Chemnitz
Publikationsfonds
optimal control
finite-strain elasticity
quasi-Newton method
multigrid preconditioning
optimization
finite element method
Technische Universität Chemnitz
Publication fund
ddc:518
Optimalsteuerung
Elastizität
Optimierung
Finite-Elemente-Methode
spellingShingle Optimalsteuerung
Elastizität
quasi-Newton-Verfahren
Mehrgitter-Vorkonditionierung
Optimierung
Finite-Elemente-Methode
Technische Universität Chemnitz
Publikationsfonds
optimal control
finite-strain elasticity
quasi-Newton method
multigrid preconditioning
optimization
finite element method
Technische Universität Chemnitz
Publication fund
ddc:518
Optimalsteuerung
Elastizität
Optimierung
Finite-Elemente-Methode
Günnel, Andreas
Herzog, Roland
Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
description Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance.
author2 Frontiers Research Foundation,
author_facet Frontiers Research Foundation,
Günnel, Andreas
Herzog, Roland
author Günnel, Andreas
Herzog, Roland
author_sort Günnel, Andreas
title Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
title_short Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
title_full Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
title_fullStr Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
title_full_unstemmed Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension
title_sort optimal control problems in finite-strain elasticity by inner pressure and fiber tension
publisher Universitätsbibliothek Chemnitz
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209295
http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/fams-02-00004.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/20929/signatur.txt.asc
work_keys_str_mv AT gunnelandreas optimalcontrolproblemsinfinitestrainelasticitybyinnerpressureandfibertension
AT herzogroland optimalcontrolproblemsinfinitestrainelasticitybyinnerpressureandfibertension
_version_ 1718392976091119616