Optimal rates for Lavrentiev regularization with adjoint source conditions

There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness...

Full description

Bibliographic Details
Main Authors: Plato, Robert, Mathé, Peter, Hofmann, Bernd
Other Authors: Universität Siegen, Fachbereich Mathematik
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2016
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010
http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-199010
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-1990102016-03-11T03:28:48Z Optimal rates for Lavrentiev regularization with adjoint source conditions Plato, Robert Mathé, Peter Hofmann, Bernd Lineare inkorrekte Probleme Regularisierung accretive Operatoren Quellbedingungen Konvergenzraten Linear ill-posed problems regularization accretive operators source conditions convergence rates ddc:510 Regularisierung There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators. Universitätsbibliothek Chemnitz Universität Siegen, Fachbereich Mathematik Weierstrass Institut Berlin, Stochastische Algorithmen und Nichtparametrische Statistik TU Chemnitz, Fakultät für Mathematik 2016-03-10 doc-type:preprint application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 urn:nbn:de:bsz:ch1-qucosa-199010 issn:1614-8835 http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc eng dcterms:isPartOf:Preprintreihe der Fakultät für Mathematik der TU Chemnitz, Preprint 2016-03
collection NDLTD
language English
format Others
sources NDLTD
topic Lineare inkorrekte Probleme
Regularisierung
accretive Operatoren
Quellbedingungen
Konvergenzraten
Linear ill-posed problems
regularization
accretive operators
source conditions
convergence rates
ddc:510
Regularisierung
spellingShingle Lineare inkorrekte Probleme
Regularisierung
accretive Operatoren
Quellbedingungen
Konvergenzraten
Linear ill-posed problems
regularization
accretive operators
source conditions
convergence rates
ddc:510
Regularisierung
Plato, Robert
Mathé, Peter
Hofmann, Bernd
Optimal rates for Lavrentiev regularization with adjoint source conditions
description There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
author2 Universität Siegen, Fachbereich Mathematik
author_facet Universität Siegen, Fachbereich Mathematik
Plato, Robert
Mathé, Peter
Hofmann, Bernd
author Plato, Robert
Mathé, Peter
Hofmann, Bernd
author_sort Plato, Robert
title Optimal rates for Lavrentiev regularization with adjoint source conditions
title_short Optimal rates for Lavrentiev regularization with adjoint source conditions
title_full Optimal rates for Lavrentiev regularization with adjoint source conditions
title_fullStr Optimal rates for Lavrentiev regularization with adjoint source conditions
title_full_unstemmed Optimal rates for Lavrentiev regularization with adjoint source conditions
title_sort optimal rates for lavrentiev regularization with adjoint source conditions
publisher Universitätsbibliothek Chemnitz
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010
http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc
work_keys_str_mv AT platorobert optimalratesforlavrentievregularizationwithadjointsourceconditions
AT mathepeter optimalratesforlavrentievregularizationwithadjointsourceconditions
AT hofmannbernd optimalratesforlavrentievregularizationwithadjointsourceconditions
_version_ 1718202684308193280