Optimal rates for Lavrentiev regularization with adjoint source conditions
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
2016
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-199010 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-1990102016-03-11T03:28:48Z Optimal rates for Lavrentiev regularization with adjoint source conditions Plato, Robert Mathé, Peter Hofmann, Bernd Lineare inkorrekte Probleme Regularisierung accretive Operatoren Quellbedingungen Konvergenzraten Linear ill-posed problems regularization accretive operators source conditions convergence rates ddc:510 Regularisierung There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators. Universitätsbibliothek Chemnitz Universität Siegen, Fachbereich Mathematik Weierstrass Institut Berlin, Stochastische Algorithmen und Nichtparametrische Statistik TU Chemnitz, Fakultät für Mathematik 2016-03-10 doc-type:preprint application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 urn:nbn:de:bsz:ch1-qucosa-199010 issn:1614-8835 http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc eng dcterms:isPartOf:Preprintreihe der Fakultät für Mathematik der TU Chemnitz, Preprint 2016-03 |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Lineare inkorrekte Probleme Regularisierung accretive Operatoren Quellbedingungen Konvergenzraten Linear ill-posed problems regularization accretive operators source conditions convergence rates ddc:510 Regularisierung |
spellingShingle |
Lineare inkorrekte Probleme Regularisierung accretive Operatoren Quellbedingungen Konvergenzraten Linear ill-posed problems regularization accretive operators source conditions convergence rates ddc:510 Regularisierung Plato, Robert Mathé, Peter Hofmann, Bernd Optimal rates for Lavrentiev regularization with adjoint source conditions |
description |
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
|
author2 |
Universität Siegen, Fachbereich Mathematik |
author_facet |
Universität Siegen, Fachbereich Mathematik Plato, Robert Mathé, Peter Hofmann, Bernd |
author |
Plato, Robert Mathé, Peter Hofmann, Bernd |
author_sort |
Plato, Robert |
title |
Optimal rates for Lavrentiev regularization with adjoint source conditions |
title_short |
Optimal rates for Lavrentiev regularization with adjoint source conditions |
title_full |
Optimal rates for Lavrentiev regularization with adjoint source conditions |
title_fullStr |
Optimal rates for Lavrentiev regularization with adjoint source conditions |
title_full_unstemmed |
Optimal rates for Lavrentiev regularization with adjoint source conditions |
title_sort |
optimal rates for lavrentiev regularization with adjoint source conditions |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2016 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-199010 http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/Preprint_2016_03.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/19901/signatur.txt.asc |
work_keys_str_mv |
AT platorobert optimalratesforlavrentievregularizationwithadjointsourceconditions AT mathepeter optimalratesforlavrentievregularizationwithadjointsourceconditions AT hofmannbernd optimalratesforlavrentievregularizationwithadjointsourceconditions |
_version_ |
1718202684308193280 |