Basics of Linear Thermoelasticity

In this preprint, we look onto the theory of linear thermoelasticity. At the beginning, this theory is shortly repeated and afterwards applied to transversely isotropic materials. Then, the corresponding weak formulation is derived, which is the starting point for a FE-discretisation. In the last pa...

Full description

Bibliographic Details
Main Authors: Meyer, Arnd, Springer, Rolf
Other Authors: TU Chemnitz, Fakultät für Mathematik
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2015
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160178
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160178
http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/csc15-03.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/signatur.txt.asc
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-160178
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-1601782015-10-23T06:12:38Z Basics of Linear Thermoelasticity Meyer, Arnd Springer, Rolf Lineare Thermoelastizität transversal isotrop transverse isotropy linear thermoelasticity ddc:518 Finite-Elemente-Methode Thermoelastizität In this preprint, we look onto the theory of linear thermoelasticity. At the beginning, this theory is shortly repeated and afterwards applied to transversely isotropic materials. Then, the corresponding weak formulation is derived, which is the starting point for a FE-discretisation. In the last part, we explain how we added this material behaviour to an adaptive Finite-Element-code and show some numerical results. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik 2015-02-06 doc-type:preprint application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160178 urn:nbn:de:bsz:ch1-qucosa-160178 issn:1864-0087 http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/csc15-03.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/signatur.txt.asc eng dcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 15-03
collection NDLTD
language English
format Others
sources NDLTD
topic Lineare Thermoelastizität
transversal isotrop
transverse isotropy
linear thermoelasticity
ddc:518
Finite-Elemente-Methode
Thermoelastizität
spellingShingle Lineare Thermoelastizität
transversal isotrop
transverse isotropy
linear thermoelasticity
ddc:518
Finite-Elemente-Methode
Thermoelastizität
Meyer, Arnd
Springer, Rolf
Basics of Linear Thermoelasticity
description In this preprint, we look onto the theory of linear thermoelasticity. At the beginning, this theory is shortly repeated and afterwards applied to transversely isotropic materials. Then, the corresponding weak formulation is derived, which is the starting point for a FE-discretisation. In the last part, we explain how we added this material behaviour to an adaptive Finite-Element-code and show some numerical results.
author2 TU Chemnitz, Fakultät für Mathematik
author_facet TU Chemnitz, Fakultät für Mathematik
Meyer, Arnd
Springer, Rolf
author Meyer, Arnd
Springer, Rolf
author_sort Meyer, Arnd
title Basics of Linear Thermoelasticity
title_short Basics of Linear Thermoelasticity
title_full Basics of Linear Thermoelasticity
title_fullStr Basics of Linear Thermoelasticity
title_full_unstemmed Basics of Linear Thermoelasticity
title_sort basics of linear thermoelasticity
publisher Universitätsbibliothek Chemnitz
publishDate 2015
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160178
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160178
http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/csc15-03.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/16017/signatur.txt.asc
work_keys_str_mv AT meyerarnd basicsoflinearthermoelasticity
AT springerrolf basicsoflinearthermoelasticity
_version_ 1718109706366484480