Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

We investigate model reduction of large-scale linear time-invariant systems in generalized state-space form. We consider sparse state matrix pencils, including pencils with banded structure. The balancing-based methods employed here are composed of well-known linear algebra operations and have be...

Full description

Bibliographic Details
Main Authors: Badía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Remón, Alfredo
Other Authors: TU Chemnitz, Fakultät für Mathematik
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2007
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701947
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701947
http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/data/csc06-04.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/20070194.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-200701947
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-2007019472013-01-07T19:57:17Z Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Badía, José M. Benner, Peter Mayo, Rafael Quintana-Ortí, Enrique S. Quintana-Ortí, Gregorio Remón, Alfredo balanced truncation generalized Lyapunov equations model reduction ddc:510 Ljapunov-Gleichung Ordnungsreduktion Parallelverarbeitung We investigate model reduction of large-scale linear time-invariant systems in generalized state-space form. We consider sparse state matrix pencils, including pencils with banded structure. The balancing-based methods employed here are composed of well-known linear algebra operations and have been recently shown to be applicable to large models by exploiting the structure of the matrices defining the dynamics of the system. In this paper we propose a modification of the LR-ADI iteration to solve large-scale generalized Lyapunov equations together with a practical convergence criterion, and several other implementation refinements. Using kernels from several serial and parallel linear algebra libraries, we have developed a parallel package for model reduction, SpaRed, extending the applicability of balanced truncation to sparse systems with up to $O(10^5)$ states. Experiments on an SMP parallel architecture consisting of Intel Itanium 2 processors illustrate the numerical performance of this approach and the potential of the parallel algorithms for model reduction of large-scale sparse systems. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik 2007-11-26 doc-type:preprint application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701947 urn:nbn:de:bsz:ch1-200701947 issn:1864-0087 http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/data/csc06-04.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/20070194.txt Chemnitz Scientific Computing Preprints eng Dokument ist für Print on Demand freigegeben
collection NDLTD
language English
format Others
sources NDLTD
topic balanced truncation
generalized Lyapunov equations
model reduction
ddc:510
Ljapunov-Gleichung
Ordnungsreduktion
Parallelverarbeitung
spellingShingle balanced truncation
generalized Lyapunov equations
model reduction
ddc:510
Ljapunov-Gleichung
Ordnungsreduktion
Parallelverarbeitung
Badía, José M.
Benner, Peter
Mayo, Rafael
Quintana-Ortí, Enrique S.
Quintana-Ortí, Gregorio
Remón, Alfredo
Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
description We investigate model reduction of large-scale linear time-invariant systems in generalized state-space form. We consider sparse state matrix pencils, including pencils with banded structure. The balancing-based methods employed here are composed of well-known linear algebra operations and have been recently shown to be applicable to large models by exploiting the structure of the matrices defining the dynamics of the system. In this paper we propose a modification of the LR-ADI iteration to solve large-scale generalized Lyapunov equations together with a practical convergence criterion, and several other implementation refinements. Using kernels from several serial and parallel linear algebra libraries, we have developed a parallel package for model reduction, SpaRed, extending the applicability of balanced truncation to sparse systems with up to $O(10^5)$ states. Experiments on an SMP parallel architecture consisting of Intel Itanium 2 processors illustrate the numerical performance of this approach and the potential of the parallel algorithms for model reduction of large-scale sparse systems.
author2 TU Chemnitz, Fakultät für Mathematik
author_facet TU Chemnitz, Fakultät für Mathematik
Badía, José M.
Benner, Peter
Mayo, Rafael
Quintana-Ortí, Enrique S.
Quintana-Ortí, Gregorio
Remón, Alfredo
author Badía, José M.
Benner, Peter
Mayo, Rafael
Quintana-Ortí, Enrique S.
Quintana-Ortí, Gregorio
Remón, Alfredo
author_sort Badía, José M.
title Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
title_short Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
title_full Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
title_fullStr Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
title_full_unstemmed Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems
title_sort balanced truncation model reduction of large and sparse generalized linear systems
publisher Universitätsbibliothek Chemnitz
publishDate 2007
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701947
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701947
http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/data/csc06-04.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5505/20070194.txt
work_keys_str_mv AT badiajosem balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
AT bennerpeter balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
AT mayorafael balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
AT quintanaortienriques balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
AT quintanaortigregorio balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
AT remonalfredo balancedtruncationmodelreductionoflargeandsparsegeneralizedlinearsystems
_version_ 1716471958204317696