Pricing derivatives in stochastic volatility models using the finite difference method

The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differentia...

Full description

Bibliographic Details
Main Author: Kluge, Tino
Other Authors: TU Chemnitz, Fakultät für Mathematik
Format: Dissertation
Language:English
Published: Universitätsbibliothek Chemnitz 2003
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-200300086
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-2003000862016-02-16T03:27:53Z Pricing derivatives in stochastic volatility models using the finite difference method Kluge, Tino Heston modell lokaler Fehler nicht-uniformes Gitternetz stochastic volatility ddc:510 Finanzmathematik Finite-Differenzen-Methode The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differential equation (p.d.e.) for the value function of an option can be derived. This p.d.e. can be solved with the finite difference method (f.d.m.). The stability and consistency of the method is examined. Furthermore a boundary condition is proposed to reduce the numerical error. Finally a non uniform structured grid is derived which is fairly optimal for the numerical result in the most interesting point. Das stochastische Volatilitaetsmodell von Heston ist eines der Erweiterungen des Black-Scholes-Modells. Von der stochastischen Differentialgleichung fuer den unterliegenden Prozess kann eine partielle Differentialgleichung fuer die Wertfunktion einer Option abgeleitet werden. Es wird die Loesung mittels Finiter Differenzenmethode untersucht (Konsistenz, Stabilitaet). Weiterhin wird eine Randbedingung und ein spezielles nicht-uniformes Netz vorgeschlagen, was zu einer starken Reduzierung des numerischen Fehlers der Wertfunktion in einem ganz bestimmten Punkt fuehrt. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik 2003-01-23 doc-type:masterThesis http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086 urn:nbn:de:bsz:ch1-200300086 eng
collection NDLTD
language English
format Dissertation
sources NDLTD
topic Heston modell
lokaler Fehler
nicht-uniformes Gitternetz
stochastic volatility
ddc:510
Finanzmathematik
Finite-Differenzen-Methode
spellingShingle Heston modell
lokaler Fehler
nicht-uniformes Gitternetz
stochastic volatility
ddc:510
Finanzmathematik
Finite-Differenzen-Methode
Kluge, Tino
Pricing derivatives in stochastic volatility models using the finite difference method
description The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differential equation (p.d.e.) for the value function of an option can be derived. This p.d.e. can be solved with the finite difference method (f.d.m.). The stability and consistency of the method is examined. Furthermore a boundary condition is proposed to reduce the numerical error. Finally a non uniform structured grid is derived which is fairly optimal for the numerical result in the most interesting point. === Das stochastische Volatilitaetsmodell von Heston ist eines der Erweiterungen des Black-Scholes-Modells. Von der stochastischen Differentialgleichung fuer den unterliegenden Prozess kann eine partielle Differentialgleichung fuer die Wertfunktion einer Option abgeleitet werden. Es wird die Loesung mittels Finiter Differenzenmethode untersucht (Konsistenz, Stabilitaet). Weiterhin wird eine Randbedingung und ein spezielles nicht-uniformes Netz vorgeschlagen, was zu einer starken Reduzierung des numerischen Fehlers der Wertfunktion in einem ganz bestimmten Punkt fuehrt.
author2 TU Chemnitz, Fakultät für Mathematik
author_facet TU Chemnitz, Fakultät für Mathematik
Kluge, Tino
author Kluge, Tino
author_sort Kluge, Tino
title Pricing derivatives in stochastic volatility models using the finite difference method
title_short Pricing derivatives in stochastic volatility models using the finite difference method
title_full Pricing derivatives in stochastic volatility models using the finite difference method
title_fullStr Pricing derivatives in stochastic volatility models using the finite difference method
title_full_unstemmed Pricing derivatives in stochastic volatility models using the finite difference method
title_sort pricing derivatives in stochastic volatility models using the finite difference method
publisher Universitätsbibliothek Chemnitz
publishDate 2003
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086
work_keys_str_mv AT klugetino pricingderivativesinstochasticvolatilitymodelsusingthefinitedifferencemethod
_version_ 1718189620575862784