Pricing derivatives in stochastic volatility models using the finite difference method
The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differentia...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
2003
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300086 |
Summary: | The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differential equation (p.d.e.) for the value function of an option can be derived. This p.d.e. can be solved with the finite difference method (f.d.m.). The stability and consistency of the method is examined. Furthermore a boundary condition is proposed to reduce the numerical error. Finally a non uniform structured grid is derived which is fairly optimal for the numerical result in the most interesting point. === Das stochastische Volatilitaetsmodell von Heston ist eines der Erweiterungen des Black-Scholes-Modells.
Von der stochastischen Differentialgleichung fuer den unterliegenden Prozess kann eine partielle Differentialgleichung fuer die Wertfunktion einer Option abgeleitet werden. Es wird die Loesung mittels Finiter Differenzenmethode untersucht
(Konsistenz, Stabilitaet). Weiterhin wird eine Randbedingung und ein spezielles nicht-uniformes Netz vorgeschlagen, was zu einer starken Reduzierung des numerischen Fehlers der Wertfunktion in einem ganz bestimmten Punkt fuehrt. |
---|