A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations

The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, confor...

Full description

Bibliographic Details
Main Authors: Creusé, Emmanuel, Kunert, Gerd, Nicaise, Serge
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2003
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/20030005.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-200300057
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-2003000572013-01-07T19:55:46Z A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations A posteriori Fehlerschätzer für das Stokes Problem: Anisotrope und isotrope Diskretisierungen Creusé, Emmanuel Kunert, Gerd Nicaise, Serge Stokes problem anisotropic solution error estimator stretched elements ddc:510 The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements. This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented. Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2003-01-16 doc-type:preprint text/html application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057 urn:nbn:de:bsz:ch1-200300057 issn:1619-7178 (Print) issn:1619-7186 (Internet) http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/20030005.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic Stokes problem
anisotropic solution
error estimator
stretched elements
ddc:510
spellingShingle Stokes problem
anisotropic solution
error estimator
stretched elements
ddc:510
Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
description The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements. This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented. Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
author Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
author_sort Creusé, Emmanuel
title A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_short A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_full A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_fullStr A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_full_unstemmed A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_sort posteriori error estimation for the stokes problem: anisotropic and isotropic discretizations
publisher Universitätsbibliothek Chemnitz
publishDate 2003
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/data/sfb03-01.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4637/20030005.txt
work_keys_str_mv AT creuseemmanuel aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT kunertgerd aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT nicaiseserge aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT creuseemmanuel aposteriorifehlerschatzerfurdasstokesproblemanisotropeundisotropediskretisierungen
AT kunertgerd aposteriorifehlerschatzerfurdasstokesproblemanisotropeundisotropediskretisierungen
AT nicaiseserge aposteriorifehlerschatzerfurdasstokesproblemanisotropeundisotropediskretisierungen
AT creuseemmanuel posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT kunertgerd posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT nicaiseserge posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
_version_ 1716471891002130432