Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
2000
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-200000867 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-2000008672013-01-07T19:55:12Z Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes Kunert, Gerd error estimator anisotropic solution stretched elements reaction diffusion equation singularly perturbed problem ddc:510 ddc:004 We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2000-11-09 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 urn:nbn:de:bsz:ch1-200000867 http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
error estimator anisotropic solution stretched elements reaction diffusion equation singularly perturbed problem ddc:510 ddc:004 |
spellingShingle |
error estimator anisotropic solution stretched elements reaction diffusion equation singularly perturbed problem ddc:510 ddc:004 Kunert, Gerd Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
description |
We consider a singularly perturbed reaction-diffusion problem and
derive and rigorously analyse an a posteriori residual error
estimator that can be applied to anisotropic finite element meshes.
The quotient of the upper and lower error bounds is the so-called
matching function which depends on the anisotropy (of the
mesh and the solution) but not on the small perturbation parameter.
This matching function measures how well the anisotropic finite
element mesh corresponds to the anisotropic problem.
Provided this correspondence is sufficiently good, the matching
function is O(1).
Hence one obtains tight error bounds, i.e. the error estimator
is reliable and efficient as well as robust with respect to the
small perturbation parameter.
A numerical example supports the anisotropic error analysis. |
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Kunert, Gerd |
author |
Kunert, Gerd |
author_sort |
Kunert, Gerd |
title |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
title_short |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
title_full |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
title_fullStr |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
title_full_unstemmed |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
title_sort |
robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2000 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt |
work_keys_str_mv |
AT kunertgerd robustaposteriorierrorestimationforasingularlyperturbedreactiondiffusionequationonanisotropictetrahedralmeshes |
_version_ |
1716471818105126912 |