Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes

We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the...

Full description

Bibliographic Details
Main Author: Kunert, Gerd
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2000
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-200000867
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-2000008672013-01-07T19:55:12Z Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes Kunert, Gerd error estimator anisotropic solution stretched elements reaction diffusion equation singularly perturbed problem ddc:510 ddc:004 We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2000-11-09 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867 urn:nbn:de:bsz:ch1-200000867 http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic error estimator
anisotropic solution
stretched elements
reaction diffusion equation
singularly perturbed problem
ddc:510
ddc:004
spellingShingle error estimator
anisotropic solution
stretched elements
reaction diffusion equation
singularly perturbed problem
ddc:510
ddc:004
Kunert, Gerd
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
description We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Kunert, Gerd
author Kunert, Gerd
author_sort Kunert, Gerd
title Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
title_short Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
title_full Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
title_fullStr Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
title_full_unstemmed Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
title_sort robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes
publisher Universitätsbibliothek Chemnitz
publishDate 2000
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/data/ReacDiff.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4355/20000086.txt
work_keys_str_mv AT kunertgerd robustaposteriorierrorestimationforasingularlyperturbedreactiondiffusionequationonanisotropictetrahedralmeshes
_version_ 1716471818105126912