FEM auf irregulären hierarchischen Dreiecksnetzen
From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basi...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
1998
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199801330 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998013302013-01-07T19:54:54Z FEM auf irregulären hierarchischen Dreiecksnetzen Groh, U. PDE FEM triangular mesh hierarchical refinement elliptic model BPX Yserentant precondition domain decomposition MSC 65N30 ddc:510 From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basis and the accompanying mesh are described by graphs. The corresponding FE basis is generated by hierarchical transformation. The characteristic feature of the generalizable concept is the combination of the conforming hierarchical basis for easily defining and changing the FE space with an accompanying nonconforming FE basis for the easy assembly of a FE equations system. For an elliptic model the conforming FEM problem is solved by an iterative method applied to this nonconforming FEM equations system and modified by projection into the subspace of conforming basis functions. The iterative method used is the Yserentant- or BPX-preconditioned conjugate gradient algorithm. On a MIMD computer system the parallelization by domain decomposition is easy and efficient to organize both for the generation and solution of the equations system and for the change of basis and mesh. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 1998-10-30 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 urn:nbn:de:bsz:ch1-199801330 http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
PDE FEM triangular mesh hierarchical refinement elliptic model BPX Yserentant precondition domain decomposition MSC 65N30 ddc:510 |
spellingShingle |
PDE FEM triangular mesh hierarchical refinement elliptic model BPX Yserentant precondition domain decomposition MSC 65N30 ddc:510 Groh, U. FEM auf irregulären hierarchischen Dreiecksnetzen |
description |
From the viewpoint of the adaptive solution of partial differential equations a finit
e element method on hierarchical triangular meshes is developed permitting hanging nodes
arising from nonuniform hierarchical refinement.
Construction, extension and restriction of the nonuniform hierarchical basis and the
accompanying mesh are described by graphs. The corresponding FE basis is generated by
hierarchical transformation. The characteristic feature of the generalizable concept is the
combination of the conforming hierarchical basis for easily defining and changing the FE
space with an accompanying nonconforming FE basis for the easy assembly of a FE
equations system. For an elliptic model the conforming FEM problem is solved by an iterative
method applied to this nonconforming FEM equations system and modified by
projection into the subspace of conforming basis functions. The iterative method used is the
Yserentant- or BPX-preconditioned conjugate gradient algorithm.
On a MIMD computer system the parallelization by domain decomposition is easy and
efficient to organize both for the generation and solution of the equations system and for
the change of basis and mesh. |
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Groh, U. |
author |
Groh, U. |
author_sort |
Groh, U. |
title |
FEM auf irregulären hierarchischen Dreiecksnetzen |
title_short |
FEM auf irregulären hierarchischen Dreiecksnetzen |
title_full |
FEM auf irregulären hierarchischen Dreiecksnetzen |
title_fullStr |
FEM auf irregulären hierarchischen Dreiecksnetzen |
title_full_unstemmed |
FEM auf irregulären hierarchischen Dreiecksnetzen |
title_sort |
fem auf irregulären hierarchischen dreiecksnetzen |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
1998 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt |
work_keys_str_mv |
AT grohu femaufirregularenhierarchischendreiecksnetzen |
_version_ |
1716471775479463936 |