FEM auf irregulären hierarchischen Dreiecksnetzen

From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basi...

Full description

Bibliographic Details
Main Author: Groh, U.
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 1998
Subjects:
PDE
FEM
BPX
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199801330
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998013302013-01-07T19:54:54Z FEM auf irregulären hierarchischen Dreiecksnetzen Groh, U. PDE FEM triangular mesh hierarchical refinement elliptic model BPX Yserentant precondition domain decomposition MSC 65N30 ddc:510 From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basis and the accompanying mesh are described by graphs. The corresponding FE basis is generated by hierarchical transformation. The characteristic feature of the generalizable concept is the combination of the conforming hierarchical basis for easily defining and changing the FE space with an accompanying nonconforming FE basis for the easy assembly of a FE equations system. For an elliptic model the conforming FEM problem is solved by an iterative method applied to this nonconforming FEM equations system and modified by projection into the subspace of conforming basis functions. The iterative method used is the Yserentant- or BPX-preconditioned conjugate gradient algorithm. On a MIMD computer system the parallelization by domain decomposition is easy and efficient to organize both for the generation and solution of the equations system and for the change of basis and mesh. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 1998-10-30 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330 urn:nbn:de:bsz:ch1-199801330 http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic PDE
FEM
triangular mesh
hierarchical refinement
elliptic model
BPX
Yserentant
precondition
domain decomposition
MSC 65N30
ddc:510
spellingShingle PDE
FEM
triangular mesh
hierarchical refinement
elliptic model
BPX
Yserentant
precondition
domain decomposition
MSC 65N30
ddc:510
Groh, U.
FEM auf irregulären hierarchischen Dreiecksnetzen
description From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basis and the accompanying mesh are described by graphs. The corresponding FE basis is generated by hierarchical transformation. The characteristic feature of the generalizable concept is the combination of the conforming hierarchical basis for easily defining and changing the FE space with an accompanying nonconforming FE basis for the easy assembly of a FE equations system. For an elliptic model the conforming FEM problem is solved by an iterative method applied to this nonconforming FEM equations system and modified by projection into the subspace of conforming basis functions. The iterative method used is the Yserentant- or BPX-preconditioned conjugate gradient algorithm. On a MIMD computer system the parallelization by domain decomposition is easy and efficient to organize both for the generation and solution of the equations system and for the change of basis and mesh.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Groh, U.
author Groh, U.
author_sort Groh, U.
title FEM auf irregulären hierarchischen Dreiecksnetzen
title_short FEM auf irregulären hierarchischen Dreiecksnetzen
title_full FEM auf irregulären hierarchischen Dreiecksnetzen
title_fullStr FEM auf irregulären hierarchischen Dreiecksnetzen
title_full_unstemmed FEM auf irregulären hierarchischen Dreiecksnetzen
title_sort fem auf irregulären hierarchischen dreiecksnetzen
publisher Universitätsbibliothek Chemnitz
publishDate 1998
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801330
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/data/b005.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4212/19980133.txt
work_keys_str_mv AT grohu femaufirregularenhierarchischendreiecksnetzen
_version_ 1716471775479463936