On the analytic representation of the correlation function of linear random vibration systems
This paper is devoted to the computation of statistical characteristics of the response of discrete vibration systems with a random external excitation. The excitation can act at multiple points and is modeled by a time-shifted random process and its derivatives up to the second order. Statistical c...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
1998
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801272 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801272 http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.dvi http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/19980127.txt |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199801272 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998012722013-01-07T19:54:54Z On the analytic representation of the correlation function of linear random vibration systems Gruner, J. Scheidt, J. vom Wunderlich, R. random vibrations correlation function asymptotic expansion weakly correlated random function MSC 70L05 MSC 60G10 ddc:510 This paper is devoted to the computation of statistical characteristics of the response of discrete vibration systems with a random external excitation. The excitation can act at multiple points and is modeled by a time-shifted random process and its derivatives up to the second order. Statistical characteristics of the response are given by expansions as to the correlation length of a weakly correlated random process which is used in the excitation model. As the main result analytic expressions of some integrals involved in the expansion terms are derived. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik 1998-10-30 doc-type:preprint application/pdf application/x-dvi application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801272 urn:nbn:de:bsz:ch1-199801272 http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.dvi http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/19980127.txt eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
random vibrations correlation function asymptotic expansion weakly correlated random function MSC 70L05 MSC 60G10 ddc:510 |
spellingShingle |
random vibrations correlation function asymptotic expansion weakly correlated random function MSC 70L05 MSC 60G10 ddc:510 Gruner, J. Scheidt, J. vom Wunderlich, R. On the analytic representation of the correlation function of linear random vibration systems |
description |
This paper is devoted to the computation of statistical characteristics of
the response of discrete vibration systems with a random external excitation.
The excitation can act at multiple points and is modeled by a time-shifted
random process and its derivatives up to the second order. Statistical characteristics
of the response are given by expansions as to the correlation length
of a weakly correlated random process which is used in the excitation model.
As the main result analytic expressions of some integrals involved in the expansion terms are derived. |
author2 |
TU Chemnitz, Fakultät für Mathematik |
author_facet |
TU Chemnitz, Fakultät für Mathematik Gruner, J. Scheidt, J. vom Wunderlich, R. |
author |
Gruner, J. Scheidt, J. vom Wunderlich, R. |
author_sort |
Gruner, J. |
title |
On the analytic representation of the correlation function of linear random vibration systems |
title_short |
On the analytic representation of the correlation function of linear random vibration systems |
title_full |
On the analytic representation of the correlation function of linear random vibration systems |
title_fullStr |
On the analytic representation of the correlation function of linear random vibration systems |
title_full_unstemmed |
On the analytic representation of the correlation function of linear random vibration systems |
title_sort |
on the analytic representation of the correlation function of linear random vibration systems |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
1998 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801272 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801272 http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.dvi http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/data/a018.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4206/19980127.txt |
work_keys_str_mv |
AT grunerj ontheanalyticrepresentationofthecorrelationfunctionoflinearrandomvibrationsystems AT scheidtjvom ontheanalyticrepresentationofthecorrelationfunctionoflinearrandomvibrationsystems AT wunderlichr ontheanalyticrepresentationofthecorrelationfunctionoflinearrandomvibrationsystems |
_version_ |
1716471752100413440 |