Local theory of a collocation method for Cauchy singular integral equations on an interval
We consider a collocation method for Cauchy singular integral equations on the interval based on weighted Chebyshev polynomials , where the coefficients of the operator are piecewise continuous. Stability conditions are derived using Banach algebra methods, and numerical results are given.
Main Authors: | Junghanns, P., Weber, U. |
---|---|
Other Authors: | TU Chemnitz, Fakultät für Mathematik |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
1998
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801203 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801203 http://www.qucosa.de/fileadmin/data/qucosa/documents/4199/data/a010.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4199/data/a010.dvi http://www.qucosa.de/fileadmin/data/qucosa/documents/4199/data/a010.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4199/19980120.txt |
Similar Items
-
Local theory of a collocation method for Cauchy singular integral equations on an interval
by: Junghanns, P., et al.
Published: (1998) -
Local theory of projection methods for Cauchy singular integral equations on an interval
by: Junghanns, P., et al.
Published: (1998) -
Local theory of projection methods for Cauchy singular integral equations on an interval
by: Junghanns, P., et al.
Published: (1998) -
Numerical solution of certain Cauchy singular integral equations using a collocation scheme
by: Ali Seifi
Published: (2020-09-01) -
An effective collocation technique to solve the singular Fredholm integral equations with Cauchy kernel
by: Ali Seifi, et al.
Published: (2017-09-01)