Smoothed universal correlations in the two-dimensional Anderson model

We report on calculations of smoothed spectral correlations in the twodimensional Anderson model for weak disorder. As pointed out in (M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothing dependence of the correlation functions provides a sensitive means of establishin...

Full description

Bibliographic Details
Main Authors: Uski, V., Mehlig, B., Romer, R. A., Schreiber, M.
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 1998
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801066
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801066
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/19980106.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199801066
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998010662013-01-07T19:54:54Z Smoothed universal correlations in the two-dimensional Anderson model Uski, V. Mehlig, B. Romer, R. A. Schreiber, M. correlations Anderson model twodimensional MSC 15A52 ddc:530 We report on calculations of smoothed spectral correlations in the twodimensional Anderson model for weak disorder. As pointed out in (M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothing dependence of the correlation functions provides a sensitive means of establishing consistency with random matrix theory. We use a semiclassical approach to describe these fluctuations and offer a detailed comparison between numerical and analytical calculations for an exhaustive set of two-point correlation functions. We consider parametric correlation functions with an external Aharonov-Bohm flux as a parameter and discuss two cases, namely broken time-reversal invariance and partial breaking of time-reversal invariance. Three types of correlation functions are considered: density-of-states, velocity and matrix element correlation functions. For the values of smoothing parameter close to the mean level spacing the semiclassical expressions and the numerical results agree quite well in the whole range of the magnetic flux. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 1998-10-30 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801066 urn:nbn:de:bsz:ch1-199801066 http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/19980106.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic correlations
Anderson model
twodimensional
MSC 15A52
ddc:530
spellingShingle correlations
Anderson model
twodimensional
MSC 15A52
ddc:530
Uski, V.
Mehlig, B.
Romer, R. A.
Schreiber, M.
Smoothed universal correlations in the two-dimensional Anderson model
description We report on calculations of smoothed spectral correlations in the twodimensional Anderson model for weak disorder. As pointed out in (M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothing dependence of the correlation functions provides a sensitive means of establishing consistency with random matrix theory. We use a semiclassical approach to describe these fluctuations and offer a detailed comparison between numerical and analytical calculations for an exhaustive set of two-point correlation functions. We consider parametric correlation functions with an external Aharonov-Bohm flux as a parameter and discuss two cases, namely broken time-reversal invariance and partial breaking of time-reversal invariance. Three types of correlation functions are considered: density-of-states, velocity and matrix element correlation functions. For the values of smoothing parameter close to the mean level spacing the semiclassical expressions and the numerical results agree quite well in the whole range of the magnetic flux.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Uski, V.
Mehlig, B.
Romer, R. A.
Schreiber, M.
author Uski, V.
Mehlig, B.
Romer, R. A.
Schreiber, M.
author_sort Uski, V.
title Smoothed universal correlations in the two-dimensional Anderson model
title_short Smoothed universal correlations in the two-dimensional Anderson model
title_full Smoothed universal correlations in the two-dimensional Anderson model
title_fullStr Smoothed universal correlations in the two-dimensional Anderson model
title_full_unstemmed Smoothed universal correlations in the two-dimensional Anderson model
title_sort smoothed universal correlations in the two-dimensional anderson model
publisher Universitätsbibliothek Chemnitz
publishDate 1998
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801066
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801066
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/data/b011.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4185/19980106.txt
work_keys_str_mv AT uskiv smootheduniversalcorrelationsinthetwodimensionalandersonmodel
AT mehligb smootheduniversalcorrelationsinthetwodimensionalandersonmodel
AT romerra smootheduniversalcorrelationsinthetwodimensionalandersonmodel
AT schreiberm smootheduniversalcorrelationsinthetwodimensionalandersonmodel
_version_ 1716471746232582144