The Matrix Sign Function Method and the Computation of Invariant Subspaces
A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-c...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
1998
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199800619 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998006192018-01-26T03:23:09Z The Matrix Sign Function Method and the Computation of Invariant Subspaces Byers, R. He, C. Mehrmann, V. matrix sign function invariant subspaces stability Newton iteration numerical examples MSC 65F30 MSC 65F15 ddc:510 A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples demonstrate the theoretical results. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 1998-10-30 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 urn:nbn:de:bsz:ch1-199800619 http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
matrix sign function invariant subspaces stability Newton iteration numerical examples MSC 65F30 MSC 65F15 ddc:510 |
spellingShingle |
matrix sign function invariant subspaces stability Newton iteration numerical examples MSC 65F30 MSC 65F15 ddc:510 Byers, R. He, C. Mehrmann, V. The Matrix Sign Function Method and the Computation of Invariant Subspaces |
description |
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results. |
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Byers, R. He, C. Mehrmann, V. |
author |
Byers, R. He, C. Mehrmann, V. |
author_sort |
Byers, R. |
title |
The Matrix Sign Function Method and the Computation of Invariant Subspaces |
title_short |
The Matrix Sign Function Method and the Computation of Invariant Subspaces |
title_full |
The Matrix Sign Function Method and the Computation of Invariant Subspaces |
title_fullStr |
The Matrix Sign Function Method and the Computation of Invariant Subspaces |
title_full_unstemmed |
The Matrix Sign Function Method and the Computation of Invariant Subspaces |
title_sort |
matrix sign function method and the computation of invariant subspaces |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
1998 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt |
work_keys_str_mv |
AT byersr thematrixsignfunctionmethodandthecomputationofinvariantsubspaces AT hec thematrixsignfunctionmethodandthecomputationofinvariantsubspaces AT mehrmannv thematrixsignfunctionmethodandthecomputationofinvariantsubspaces AT byersr matrixsignfunctionmethodandthecomputationofinvariantsubspaces AT hec matrixsignfunctionmethodandthecomputationofinvariantsubspaces AT mehrmannv matrixsignfunctionmethodandthecomputationofinvariantsubspaces |
_version_ |
1718611660241895424 |