The Matrix Sign Function Method and the Computation of Invariant Subspaces

A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-c...

Full description

Bibliographic Details
Main Authors: Byers, R., He, C., Mehrmann, V.
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 1998
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-199800619
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-1998006192018-01-26T03:23:09Z The Matrix Sign Function Method and the Computation of Invariant Subspaces Byers, R. He, C. Mehrmann, V. matrix sign function invariant subspaces stability Newton iteration numerical examples MSC 65F30 MSC 65F15 ddc:510 A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples demonstrate the theoretical results. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 1998-10-30 doc-type:preprint application/pdf application/postscript text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619 urn:nbn:de:bsz:ch1-199800619 http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic matrix sign function
invariant subspaces
stability
Newton
iteration
numerical examples
MSC 65F30
MSC 65F15
ddc:510
spellingShingle matrix sign function
invariant subspaces
stability
Newton
iteration
numerical examples
MSC 65F30
MSC 65F15
ddc:510
Byers, R.
He, C.
Mehrmann, V.
The Matrix Sign Function Method and the Computation of Invariant Subspaces
description A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples demonstrate the theoretical results.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Byers, R.
He, C.
Mehrmann, V.
author Byers, R.
He, C.
Mehrmann, V.
author_sort Byers, R.
title The Matrix Sign Function Method and the Computation of Invariant Subspaces
title_short The Matrix Sign Function Method and the Computation of Invariant Subspaces
title_full The Matrix Sign Function Method and the Computation of Invariant Subspaces
title_fullStr The Matrix Sign Function Method and the Computation of Invariant Subspaces
title_full_unstemmed The Matrix Sign Function Method and the Computation of Invariant Subspaces
title_sort matrix sign function method and the computation of invariant subspaces
publisher Universitätsbibliothek Chemnitz
publishDate 1998
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/data/b025.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4140/19980061.txt
work_keys_str_mv AT byersr thematrixsignfunctionmethodandthecomputationofinvariantsubspaces
AT hec thematrixsignfunctionmethodandthecomputationofinvariantsubspaces
AT mehrmannv thematrixsignfunctionmethodandthecomputationofinvariantsubspaces
AT byersr matrixsignfunctionmethodandthecomputationofinvariantsubspaces
AT hec matrixsignfunctionmethodandthecomputationofinvariantsubspaces
AT mehrmannv matrixsignfunctionmethodandthecomputationofinvariantsubspaces
_version_ 1718611660241895424