Berechnung von STM-Profilkurven und von Quantenbillards endlicher Wandhoehe

Die Arbeit befasst sich mit zweierleiZum einen wird der STM-Abbildungsprozess simuliert, indem Probe und Spitze durch zweidimensionale Sommerfeld-Metalle frei waehlbarer Geometrie beschrieben werden und der Tunnelstrom im Transfer-Hamiltonian-Formalismus bestimmt wird. Die Berechnung der Eigenzustae...

Full description

Bibliographic Details
Main Author: Sbosny, Hartmut
Other Authors: TU Chemnitz, Fakultät für Naturwissenschaften
Format: Doctoral Thesis
Language:deu
Published: Universitätsbibliothek Chemnitz 1996
Subjects:
STM
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199600164
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199600164
http://www.qucosa.de/fileadmin/data/qucosa/documents/4032/diss_sbosny.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4032/diss_sbosny.ps
http://www.qucosa.de/fileadmin/data/qucosa/documents/4032/19960016.txt
Description
Summary:Die Arbeit befasst sich mit zweierleiZum einen wird der STM-Abbildungsprozess simuliert, indem Probe und Spitze durch zweidimensionale Sommerfeld-Metalle frei waehlbarer Geometrie beschrieben werden und der Tunnelstrom im Transfer-Hamiltonian-Formalismus bestimmt wird. Die Berechnung der Eigenzustaende der Elektroden erfolgt numerisch durch Diskretisierung der Schroedingergleichung im Differenzenverfahren. Ueber die geometrische Entfaltung der erhaltenen Konstantstromprofile mit der Spitzengeometrie werden der Vergleich zum geometrischen (mechanischen) Abtasten gezogen und Moeglichkeiten einer Vermessung von Spitze und Probe diskutiert. Zum anderen wird durch Berechnung von Eigenzustaenden in grossen zweidimensionalen Potentialkaesten (Quantenbillards) endlicher Wandhoehe der Frage nachgegangen, welchen Einfluss klassisch verbotene Gebiete (Aussenraum, Tunnelbarriere) auf Eigenfunktionen in semiklassisch grossen Systemen haben. Betrachtet wird insbesondere ein Gesamtsystem bestehend aus zwei Potentialkaesten, die ueber eine Tunnelbarriere koppeln (¨Quantenbillards endlicher Wandhoehe im Tunnelkontakt¨). Bei einer Reihe von Zustaenden zeigen sich Scars, die aus der Barriere austreten und in diese zuruecklaufen. Das Gesamtsystem ist in hohem Masse nichtintegrabel, ¨sichtbar¨ wird dieses aber nur fuer Bahnen entweder des Kontinuums oder fuer komplexe Orbits. Eine semiklassische Beschreibung dieses Phaenomens mit der gegenwaertigen, auf klassischen Orbits fussenden Theorie periodischer Bahnen ist nicht mehr moeglich. Die Einbeziehung komplexer Orbits oder Bahnen des Kontinuums (¨ungebundener Orbits¨) wird durch diese Ergebnisse angemahnt.