Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations

In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-...

Full description

Bibliographic Details
Main Author: Ballani, Jonas
Other Authors: Universität Leipzig, Fakultät für Mathematik und Informatik
Format: Doctoral Thesis
Language:English
Published: Universitätsbibliothek Leipzig 2012
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317
http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-97317
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-973172013-01-07T20:06:23Z Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations Schnelle Auswertung von Nahfeld-Randintegralen durch Tensorapproximationen Ballani, Jonas Randelementmethode Randintegral Tensorapproximation boundary element method boundary integral tensor approximation ddc:518 In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs. Universitätsbibliothek Leipzig Universität Leipzig, Fakultät für Mathematik und Informatik Max-Planck-Institut für Mathematik in den Naturwissenschaften, Prof. Dr. Wolfgang Hackbusch Prof. Dr. Wolfgang Hackbusch Prof. Dr. Daniel Kressner 2012-10-18 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 urn:nbn:de:bsz:15-qucosa-97317 http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf eng
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Randelementmethode
Randintegral
Tensorapproximation
boundary element method
boundary integral
tensor approximation
ddc:518
spellingShingle Randelementmethode
Randintegral
Tensorapproximation
boundary element method
boundary integral
tensor approximation
ddc:518
Ballani, Jonas
Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
description In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs.
author2 Universität Leipzig, Fakultät für Mathematik und Informatik
author_facet Universität Leipzig, Fakultät für Mathematik und Informatik
Ballani, Jonas
author Ballani, Jonas
author_sort Ballani, Jonas
title Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
title_short Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
title_full Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
title_fullStr Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
title_full_unstemmed Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
title_sort fast evaluation of near-field boundary integrals using tensor approximations
publisher Universitätsbibliothek Leipzig
publishDate 2012
url http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317
http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf
work_keys_str_mv AT ballanijonas fastevaluationofnearfieldboundaryintegralsusingtensorapproximations
AT ballanijonas schnelleauswertungvonnahfeldrandintegralendurchtensorapproximationen
_version_ 1716473238229352448