Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations
In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universitätsbibliothek Leipzig
2012
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-97317 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-973172013-01-07T20:06:23Z Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations Schnelle Auswertung von Nahfeld-Randintegralen durch Tensorapproximationen Ballani, Jonas Randelementmethode Randintegral Tensorapproximation boundary element method boundary integral tensor approximation ddc:518 In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs. Universitätsbibliothek Leipzig Universität Leipzig, Fakultät für Mathematik und Informatik Max-Planck-Institut für Mathematik in den Naturwissenschaften, Prof. Dr. Wolfgang Hackbusch Prof. Dr. Wolfgang Hackbusch Prof. Dr. Daniel Kressner 2012-10-18 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 urn:nbn:de:bsz:15-qucosa-97317 http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf eng |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Randelementmethode Randintegral Tensorapproximation boundary element method boundary integral tensor approximation ddc:518 |
spellingShingle |
Randelementmethode Randintegral Tensorapproximation boundary element method boundary integral tensor approximation ddc:518 Ballani, Jonas Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations |
description |
In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs.
|
author2 |
Universität Leipzig, Fakultät für Mathematik und Informatik |
author_facet |
Universität Leipzig, Fakultät für Mathematik und Informatik Ballani, Jonas |
author |
Ballani, Jonas |
author_sort |
Ballani, Jonas |
title |
Fast Evaluation of Near-Field Boundary Integrals
using Tensor Approximations |
title_short |
Fast Evaluation of Near-Field Boundary Integrals
using Tensor Approximations |
title_full |
Fast Evaluation of Near-Field Boundary Integrals
using Tensor Approximations |
title_fullStr |
Fast Evaluation of Near-Field Boundary Integrals
using Tensor Approximations |
title_full_unstemmed |
Fast Evaluation of Near-Field Boundary Integrals
using Tensor Approximations |
title_sort |
fast evaluation of near-field boundary integrals
using tensor approximations |
publisher |
Universitätsbibliothek Leipzig |
publishDate |
2012 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317 http://www.qucosa.de/fileadmin/data/qucosa/documents/9731/dissertation_ballani_2012.pdf |
work_keys_str_mv |
AT ballanijonas fastevaluationofnearfieldboundaryintegralsusingtensorapproximations AT ballanijonas schnelleauswertungvonnahfeldrandintegralendurchtensorapproximationen |
_version_ |
1716473238229352448 |