Green\'s function estimates for elliptic and parabolic operators: Applications to quantitative stochastic homogenization and invariance principles for degenerate random environments and interacting particle systems
This thesis is divided into two parts: In the first one (Chapters 1 and 2), we deal with problems arising from quantitative homogenization of the random elliptic operator in divergence form $-\\nabla \\cdot a \\nabla$. In Chapter 1 we study existence and stochastic bounds for the Green function $G$...
Main Author: | Giunti, Arianna |
---|---|
Other Authors: | Universität Leipzig, Fakultät für Mathematik und Informatik |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universitätsbibliothek Leipzig
2017
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-225533 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-225533 http://www.qucosa.de/fileadmin/data/qucosa/documents/22553/Thesis_final-signed.pdf |
Similar Items
-
Stochastic Homogenization in the Passage from Discrete to Continuous Systems - Fracture in Composite Materials
by: Lauerbach, Laura
Published: (2020) -
Homogenization of periodic elliptic degenerate PDEs with non-linear Neumann boundary condition
by: Mohamed Marzougue, et al.
Published: (2021-06-01) -
Limiting Processes in Evolutionary Equations - A Hilbert Space Approach to Homogenization
by: Waurick, Marcus
Published: (2011) -
Bestimmung effektiver Materialkennwerte mit Hilfe modaler Ansätze bei unsicheren Eingangsgrößen
by: Kreuter, Daniel Christopher
Published: (2016) -
Two-scale homogenization of systems of nonlinear parabolic equations
by: Reichelt, Sina
Published: (2015)