Grassmann variables and pseudoclassical Nuclear Magnetic Resonance

The concept of a propagator is useful and is a well-known object in diffusion NMR experiments. Here, we investigate the related concept; the propagator for the magnetization or the Green’s function of the Torrey-Bloch equations. The magnetization propagator is constructed by defining functions such...

Full description

Bibliographic Details
Main Author: Damion, Robin A.
Other Authors: Universität Leipzig, Fakultät für Physik und Geowissenschaften
Format: Article
Language:English
Published: Universitätsbibliothek Leipzig 2016
Subjects:
NMR
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214290
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214290
http://www.qucosa.de/fileadmin/data/qucosa/documents/21429/diff_fund_26%282016%291.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-214290
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-2142902016-11-25T03:30:31Z Grassmann variables and pseudoclassical Nuclear Magnetic Resonance Damion, Robin A. Magnetresonanztomographie Graßmann Hermann pseudoklassische Mechnaik Diffusion Wegintegrail NMR Nuclear magnetization propagator Grassmann numbers pseudoclassical mechanics diffusion path integral ddc:530 The concept of a propagator is useful and is a well-known object in diffusion NMR experiments. Here, we investigate the related concept; the propagator for the magnetization or the Green’s function of the Torrey-Bloch equations. The magnetization propagator is constructed by defining functions such as the Hamiltonian and Lagrangian and using these to define a path integral. It is shown that the equations of motion derived from the Lagrangian produce complex-valued trajectories (classical paths) and it is conjectured that the end-points of these trajectories are real-valued. The complex nature of the trajectories also suggests that the spin degrees of freedom are also encoded into the trajectories and this idea is explored by explicitly modeling the spin or precessing magnetization by anticommuting Grassmann variables. A pseudoclassical Lagrangian is constructed by combining the diffusive (bosonic) Lagrangian with the Grassmann (fermionic) Lagrangian, and performing the path integral over the Grassmann variables recovers the original Lagrangian that was used in the construction of the propagator for the magnetization. The trajectories of the pseudoclassical model also provide some insight into the nature of the end-points. Universitätsbibliothek Leipzig Universität Leipzig, Fakultät für Physik und Geowissenschaften Universität Leipzig, Fakultät für Physik und Geowissenschaften 2016-11-24 doc-type:article application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214290 urn:nbn:de:bsz:15-qucosa-214290 http://www.qucosa.de/fileadmin/data/qucosa/documents/21429/diff_fund_26%282016%291.pdf Diffusion fundamentals 26 (2016) eng
collection NDLTD
language English
format Article
sources NDLTD
topic Magnetresonanztomographie
Graßmann
Hermann
pseudoklassische Mechnaik
Diffusion
Wegintegrail
NMR
Nuclear magnetization
propagator
Grassmann numbers
pseudoclassical mechanics
diffusion
path integral
ddc:530
spellingShingle Magnetresonanztomographie
Graßmann
Hermann
pseudoklassische Mechnaik
Diffusion
Wegintegrail
NMR
Nuclear magnetization
propagator
Grassmann numbers
pseudoclassical mechanics
diffusion
path integral
ddc:530
Damion, Robin A.
Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
description The concept of a propagator is useful and is a well-known object in diffusion NMR experiments. Here, we investigate the related concept; the propagator for the magnetization or the Green’s function of the Torrey-Bloch equations. The magnetization propagator is constructed by defining functions such as the Hamiltonian and Lagrangian and using these to define a path integral. It is shown that the equations of motion derived from the Lagrangian produce complex-valued trajectories (classical paths) and it is conjectured that the end-points of these trajectories are real-valued. The complex nature of the trajectories also suggests that the spin degrees of freedom are also encoded into the trajectories and this idea is explored by explicitly modeling the spin or precessing magnetization by anticommuting Grassmann variables. A pseudoclassical Lagrangian is constructed by combining the diffusive (bosonic) Lagrangian with the Grassmann (fermionic) Lagrangian, and performing the path integral over the Grassmann variables recovers the original Lagrangian that was used in the construction of the propagator for the magnetization. The trajectories of the pseudoclassical model also provide some insight into the nature of the end-points.
author2 Universität Leipzig, Fakultät für Physik und Geowissenschaften
author_facet Universität Leipzig, Fakultät für Physik und Geowissenschaften
Damion, Robin A.
author Damion, Robin A.
author_sort Damion, Robin A.
title Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
title_short Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
title_full Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
title_fullStr Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
title_full_unstemmed Grassmann variables and pseudoclassical Nuclear Magnetic Resonance
title_sort grassmann variables and pseudoclassical nuclear magnetic resonance
publisher Universitätsbibliothek Leipzig
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214290
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214290
http://www.qucosa.de/fileadmin/data/qucosa/documents/21429/diff_fund_26%282016%291.pdf
work_keys_str_mv AT damionrobina grassmannvariablesandpseudoclassicalnuclearmagneticresonance
_version_ 1718397950791516160