Global observations of aerosol-cloud-precipitation-climate interactions

Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation...

Full description

Bibliographic Details
Main Authors: Rosenfeld, Daniel, Andreae, Meinrat O., Asmi, Ari, Chin, Mian, de Leeuw, Gerrit, Donovan, David P., Kahn, Ralph, Kinne, Stefan, Kivekäs, Niku, Kulmala, Markku, Lau, William, Schmidt, K. Sebastian, Suni, Tanja, Wagner, Thomas, Wild, Martin, Quaas, Johannes
Other Authors: Hebrew University of Jerusalem, Institute of Earth Sciences
Format: Article
Language:English
Published: Universitätsbibliothek Leipzig 2015
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356
http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-177356
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-1773562015-12-08T03:25:27Z Global observations of aerosol-cloud-precipitation-climate interactions Rosenfeld, Daniel Andreae, Meinrat O. Asmi, Ari Chin, Mian de Leeuw, Gerrit Donovan, David P. Kahn, Ralph Kinne, Stefan Kivekäs, Niku Kulmala, Markku Lau, William Schmidt, K. Sebastian Suni, Tanja Wagner, Thomas Wild, Martin Quaas, Johannes Wolken Aerosol Klima clouds aerosol climate ddc:551 Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing. Universitätsbibliothek Leipzig Hebrew University of Jerusalem, Institute of Earth Sciences Max-Planck-Institut für Chemie, Biogeochemie American Geophysical Union (AGU), University of Helsinki, Department of Physics NASA Goddard Space Flight Center, Earth Science Division Finnish Meteorological Institute, Atmospheric Composition Research Unit Royal Netherlands Meteorological Institute (KNMI), Max-Planck-Institut für Meteorologie, Lund University, Division of Nuclear Physics University of Colorado Boulder, Laboratory for Atmospheric and Space Physics Max-Planck-Institut für Chemie, Satellite remote sensing group Eidgenössische Technische Hochschule Zürich (ETH), Institute for Atmospheric and Climate Science Universität Leipzig, Institut für Meteorologie 2015-08-24 doc-type:article application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 urn:nbn:de:bsz:15-qucosa-177356 issn:0034-6853 http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf Reviews of geophysics (2014) 52, S. 750-808 eng
collection NDLTD
language English
format Article
sources NDLTD
topic Wolken
Aerosol
Klima
clouds
aerosol
climate
ddc:551
spellingShingle Wolken
Aerosol
Klima
clouds
aerosol
climate
ddc:551
Rosenfeld, Daniel
Andreae, Meinrat O.
Asmi, Ari
Chin, Mian
de Leeuw, Gerrit
Donovan, David P.
Kahn, Ralph
Kinne, Stefan
Kivekäs, Niku
Kulmala, Markku
Lau, William
Schmidt, K. Sebastian
Suni, Tanja
Wagner, Thomas
Wild, Martin
Quaas, Johannes
Global observations of aerosol-cloud-precipitation-climate interactions
description Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
author2 Hebrew University of Jerusalem, Institute of Earth Sciences
author_facet Hebrew University of Jerusalem, Institute of Earth Sciences
Rosenfeld, Daniel
Andreae, Meinrat O.
Asmi, Ari
Chin, Mian
de Leeuw, Gerrit
Donovan, David P.
Kahn, Ralph
Kinne, Stefan
Kivekäs, Niku
Kulmala, Markku
Lau, William
Schmidt, K. Sebastian
Suni, Tanja
Wagner, Thomas
Wild, Martin
Quaas, Johannes
author Rosenfeld, Daniel
Andreae, Meinrat O.
Asmi, Ari
Chin, Mian
de Leeuw, Gerrit
Donovan, David P.
Kahn, Ralph
Kinne, Stefan
Kivekäs, Niku
Kulmala, Markku
Lau, William
Schmidt, K. Sebastian
Suni, Tanja
Wagner, Thomas
Wild, Martin
Quaas, Johannes
author_sort Rosenfeld, Daniel
title Global observations of aerosol-cloud-precipitation-climate interactions
title_short Global observations of aerosol-cloud-precipitation-climate interactions
title_full Global observations of aerosol-cloud-precipitation-climate interactions
title_fullStr Global observations of aerosol-cloud-precipitation-climate interactions
title_full_unstemmed Global observations of aerosol-cloud-precipitation-climate interactions
title_sort global observations of aerosol-cloud-precipitation-climate interactions
publisher Universitätsbibliothek Leipzig
publishDate 2015
url http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356
http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf
work_keys_str_mv AT rosenfelddaniel globalobservationsofaerosolcloudprecipitationclimateinteractions
AT andreaemeinrato globalobservationsofaerosolcloudprecipitationclimateinteractions
AT asmiari globalobservationsofaerosolcloudprecipitationclimateinteractions
AT chinmian globalobservationsofaerosolcloudprecipitationclimateinteractions
AT deleeuwgerrit globalobservationsofaerosolcloudprecipitationclimateinteractions
AT donovandavidp globalobservationsofaerosolcloudprecipitationclimateinteractions
AT kahnralph globalobservationsofaerosolcloudprecipitationclimateinteractions
AT kinnestefan globalobservationsofaerosolcloudprecipitationclimateinteractions
AT kivekasniku globalobservationsofaerosolcloudprecipitationclimateinteractions
AT kulmalamarkku globalobservationsofaerosolcloudprecipitationclimateinteractions
AT lauwilliam globalobservationsofaerosolcloudprecipitationclimateinteractions
AT schmidtksebastian globalobservationsofaerosolcloudprecipitationclimateinteractions
AT sunitanja globalobservationsofaerosolcloudprecipitationclimateinteractions
AT wagnerthomas globalobservationsofaerosolcloudprecipitationclimateinteractions
AT wildmartin globalobservationsofaerosolcloudprecipitationclimateinteractions
AT quaasjohannes globalobservationsofaerosolcloudprecipitationclimateinteractions
_version_ 1718146093341999104