Global observations of aerosol-cloud-precipitation-climate interactions
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Universitätsbibliothek Leipzig
2015
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-177356 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-1773562015-12-08T03:25:27Z Global observations of aerosol-cloud-precipitation-climate interactions Rosenfeld, Daniel Andreae, Meinrat O. Asmi, Ari Chin, Mian de Leeuw, Gerrit Donovan, David P. Kahn, Ralph Kinne, Stefan Kivekäs, Niku Kulmala, Markku Lau, William Schmidt, K. Sebastian Suni, Tanja Wagner, Thomas Wild, Martin Quaas, Johannes Wolken Aerosol Klima clouds aerosol climate ddc:551 Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing. Universitätsbibliothek Leipzig Hebrew University of Jerusalem, Institute of Earth Sciences Max-Planck-Institut für Chemie, Biogeochemie American Geophysical Union (AGU), University of Helsinki, Department of Physics NASA Goddard Space Flight Center, Earth Science Division Finnish Meteorological Institute, Atmospheric Composition Research Unit Royal Netherlands Meteorological Institute (KNMI), Max-Planck-Institut für Meteorologie, Lund University, Division of Nuclear Physics University of Colorado Boulder, Laboratory for Atmospheric and Space Physics Max-Planck-Institut für Chemie, Satellite remote sensing group Eidgenössische Technische Hochschule Zürich (ETH), Institute for Atmospheric and Climate Science Universität Leipzig, Institut für Meteorologie 2015-08-24 doc-type:article application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 urn:nbn:de:bsz:15-qucosa-177356 issn:0034-6853 http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf Reviews of geophysics (2014) 52, S. 750-808 eng |
collection |
NDLTD |
language |
English |
format |
Article |
sources |
NDLTD |
topic |
Wolken Aerosol Klima clouds aerosol climate ddc:551 |
spellingShingle |
Wolken Aerosol Klima clouds aerosol climate ddc:551 Rosenfeld, Daniel Andreae, Meinrat O. Asmi, Ari Chin, Mian de Leeuw, Gerrit Donovan, David P. Kahn, Ralph Kinne, Stefan Kivekäs, Niku Kulmala, Markku Lau, William Schmidt, K. Sebastian Suni, Tanja Wagner, Thomas Wild, Martin Quaas, Johannes Global observations of aerosol-cloud-precipitation-climate interactions |
description |
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced
changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to
measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and
multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing. |
author2 |
Hebrew University of Jerusalem, Institute of Earth Sciences |
author_facet |
Hebrew University of Jerusalem, Institute of Earth Sciences Rosenfeld, Daniel Andreae, Meinrat O. Asmi, Ari Chin, Mian de Leeuw, Gerrit Donovan, David P. Kahn, Ralph Kinne, Stefan Kivekäs, Niku Kulmala, Markku Lau, William Schmidt, K. Sebastian Suni, Tanja Wagner, Thomas Wild, Martin Quaas, Johannes |
author |
Rosenfeld, Daniel Andreae, Meinrat O. Asmi, Ari Chin, Mian de Leeuw, Gerrit Donovan, David P. Kahn, Ralph Kinne, Stefan Kivekäs, Niku Kulmala, Markku Lau, William Schmidt, K. Sebastian Suni, Tanja Wagner, Thomas Wild, Martin Quaas, Johannes |
author_sort |
Rosenfeld, Daniel |
title |
Global observations of aerosol-cloud-precipitation-climate
interactions |
title_short |
Global observations of aerosol-cloud-precipitation-climate
interactions |
title_full |
Global observations of aerosol-cloud-precipitation-climate
interactions |
title_fullStr |
Global observations of aerosol-cloud-precipitation-climate
interactions |
title_full_unstemmed |
Global observations of aerosol-cloud-precipitation-climate
interactions |
title_sort |
global observations of aerosol-cloud-precipitation-climate
interactions |
publisher |
Universitätsbibliothek Leipzig |
publishDate |
2015 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356 http://www.qucosa.de/fileadmin/data/qucosa/documents/17735/rosenfeld_rog_2014.pdf |
work_keys_str_mv |
AT rosenfelddaniel globalobservationsofaerosolcloudprecipitationclimateinteractions AT andreaemeinrato globalobservationsofaerosolcloudprecipitationclimateinteractions AT asmiari globalobservationsofaerosolcloudprecipitationclimateinteractions AT chinmian globalobservationsofaerosolcloudprecipitationclimateinteractions AT deleeuwgerrit globalobservationsofaerosolcloudprecipitationclimateinteractions AT donovandavidp globalobservationsofaerosolcloudprecipitationclimateinteractions AT kahnralph globalobservationsofaerosolcloudprecipitationclimateinteractions AT kinnestefan globalobservationsofaerosolcloudprecipitationclimateinteractions AT kivekasniku globalobservationsofaerosolcloudprecipitationclimateinteractions AT kulmalamarkku globalobservationsofaerosolcloudprecipitationclimateinteractions AT lauwilliam globalobservationsofaerosolcloudprecipitationclimateinteractions AT schmidtksebastian globalobservationsofaerosolcloudprecipitationclimateinteractions AT sunitanja globalobservationsofaerosolcloudprecipitationclimateinteractions AT wagnerthomas globalobservationsofaerosolcloudprecipitationclimateinteractions AT wildmartin globalobservationsofaerosolcloudprecipitationclimateinteractions AT quaasjohannes globalobservationsofaerosolcloudprecipitationclimateinteractions |
_version_ |
1718146093341999104 |