Game Theory and Microeconomic Theory for Beamforming Design in Multiple-Input Single-Output Interference Channels

In interference-limited wireless networks, interference management techniques are important in order to improve the performance of the systems. Given that spectrum and energy are scarce resources in these networks, techniques that exploit the resources efficiently are desired. We consider a set of b...

Full description

Bibliographic Details
Main Author: Mochaourab, Rami
Other Authors: Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik
Format: Doctoral Thesis
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2012
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-90110
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-90110
http://www.qucosa.de/fileadmin/data/qucosa/documents/9011/Thesis_Mochaourab_2012.pdf
Description
Summary:In interference-limited wireless networks, interference management techniques are important in order to improve the performance of the systems. Given that spectrum and energy are scarce resources in these networks, techniques that exploit the resources efficiently are desired. We consider a set of base stations operating concurrently in the same spectral band. Each base station is equipped with multiple antennas and transmits data to a single-antenna mobile user. This setting corresponds to the multiple-input single-output (MISO) interference channel (IFC). The receivers are assumed to treat interference signals as noise. Moreover, each transmitter is assumed to know the channels between itself and all receivers perfectly. We study the conflict between the transmitter-receiver pairs (links) using models from game theory and microeconomic theory. These models provide solutions to resource allocation problems which in our case correspond to the joint beamforming design at the transmitters. Our interest lies in solutions that are Pareto optimal. Pareto optimality ensures that it is not further possible to improve the performance of any link without reducing the performance of another link. Strategic games in game theory determine the noncooperative choice of strategies of the players. The outcome of a strategic game is a Nash equilibrium. While the Nash equilibrium in the MISO IFC is generally not efficient, we characterize the necessary null-shaping constraints on the strategy space of each transmitter such that the Nash equilibrium outcome is Pareto optimal. An arbitrator is involved in this setting which dictates the constraints at each transmitter. In contrast to strategic games, coalitional games provide cooperative solutions between the players. We study cooperation between the links via coalitional games without transferable utility. Cooperative beamforming schemes considered are either zero forcing transmission or Wiener filter precoding. We characterize the necessary and sufficient conditions under which the core of the coalitional game with zero forcing transmission is not empty. The core solution concept specifies the strategies with which all players have the incentive to cooperate jointly in a grand coalition. While the core only considers the formation of the grand coalition, coalition formation games study coalition dynamics. We utilize a coalition formation algorithm, called merge-and-split, to determine stable link grouping. Numerical results show that while in the low signal-to-noise ratio (SNR) regime noncooperation between the links is efficient, at high SNR all links benefit in forming a grand coalition. Coalition formation shows its significance in the mid SNR regime where subset link cooperation provides joint performance gains. We use the models of exchange and competitive market from microeconomic theory to determine Pareto optimal equilibria in the two-user MISO IFC. In the exchange model, the links are represented as consumers that can trade goods within themselves. The goods in our setting correspond to the parameters of the beamforming vectors necessary to achieve all Pareto optimal points in the utility region. We utilize the conflict representation of the consumers in the Edgeworth box, a graphical tool that depicts the allocation of the goods for the two consumers, to provide closed-form solution to all Pareto optimal outcomes. The exchange equilibria are a subset of the points on the Pareto boundary at which both consumers achieve larger utility then at the Nash equilibrium. We propose a decentralized bargaining process between the consumers which starts at the Nash equilibrium and ends at an outcome arbitrarily close to an exchange equilibrium. The design of the bargaining process relies on a systematic study of the allocations in the Edgeworth box. In comparison to the exchange model, a competitive market additionally defines prices for the goods. The equilibrium in this economy is called Walrasian and corresponds to the prices that equate the demand to the supply of goods. We calculate the unique Walrasian equilibrium and propose a coordination process that is realized by the arbitrator which distributes the Walrasian prices to the consumers. The consumers then calculate in a decentralized manner their optimal demand corresponding to beamforming vectors that achieve the Walrasian equilibrium. This outcome is Pareto optimal and lies in the set of exchange equilibria. In this thesis, based on the game theoretic and microeconomic models, efficient beamforming strategies are proposed that jointly improve the performance of the systems. The gained results are applicable in interference-limited wireless networks requiring either coordination from the arbitrator or direct cooperation between the transmitters.