Östrogennachweis in wässrigen Lösungen mit Hilfe Silzium-basierter Lichtemitter
In dieser Arbeit wurde ein Sensorkonzept mit Hilfe der Si-basierten Lichtemitter (MOSLED) zum Östrogennachweis in wässrigen Lösungen entwickelt. Das Sensorkonzept basiert auf einer direkten Fluoreszenzanalyse und besteht aus der Anordnung der Bio-Komponenten und dem Verfahren zu ihrer Herstellung so...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | deu |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2010
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62465 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62465 http://www.qucosa.de/fileadmin/data/qucosa/documents/6246/Dissertation_Cherkouk.pdf |
Summary: | In dieser Arbeit wurde ein Sensorkonzept mit Hilfe der Si-basierten Lichtemitter (MOSLED) zum Östrogennachweis in wässrigen Lösungen entwickelt. Das Sensorkonzept basiert auf einer direkten Fluoreszenzanalyse und besteht aus der Anordnung der Bio-Komponenten und dem Verfahren zu ihrer Herstellung sowie dem eigentlichen Meßverfahren.
Die Anordnung besteht aus drei Teilen: die Funktionalisierung der MOSLED-Oberfläche, die Immobilisierung des hER_-Rezeptors und die Herstellung der Referenzlösung. Den Schwerpunkt dieser Arbeit bildet die Ausführung dieser drei Teile.
Die Funktionalisierung der SiO2-Oberfläche der MOSLED wurde mit Hilfe eines im Rahmen dieser Arbeit entwickelten SSC (Spraying Spin Coating)- Verfahrens realisiert. Die Ausgangsmaterialien dieses Verfahrens sind organofunktionelle Silangruppen mit drei unterschiedlichen funktionellen Gruppen, nämlich die Amino-, Carboxyl- und die Thiolgruppen. Die Optimierung dieser Methode erfolgte mittels der zwei Silangruppen APMS ((3-Aminopropyl)trimethoxysilane und Triamino-APMS (N-[3-(Trimethoxysilyl)propyl]ethylenediamine mit der gleichen Molekülstruktur, aber mit einer unterschiedlichen Anzahl an funktionellen Gruppen. Diese Resultate wurden mit in der Literatur beschriebenen Verfahren verglichen. Die Optimierung der SSC-Methode wurde zuerst auf einfache SiO2-Oberflächen und dann auf der Oberfläche der MOSLED angewendet. Die Proben wurden mit Hilfe üblicher Methoden der Oberflächenphysik- wie FTIR-, Raman- und XPS-Spektroskopie untersucht. Die Oberflächenrauhigkeit wurde mittels AFM-Spektroskopie ermittelt, deren Aufnahmen eine glatte Oberfläche bei den mit der SSC-Methode silanisierten Proben zeigen. Während die Hydrophobizität der funktionalisierten SiO2-Oberflächen zunimmt, sinkt dabei die Oberflächenenergie, welche die Anbindung eines hER_-Rezeptors mit großer Bindungsenergie begünstigt.
Zur Immobilisierung des hER_-Rezeptors wurde dieser erst an das Hüllenmolekül des QDots R-655-Farbstoffs gebunden und anschließend an der SSC-silanisierten SiO2-Oberflächen adsorbiert. Der Anteil der immobilisierten Rezeptoren wurde mittels PL-Messung kontrolliert.
Eine andere Immobilisierungstrategie des hER_-Rezeptors an die SiO2-Oberfläche kann mit Hilfe eines Aminosäure-Derivates um den Rezeptor realisiert werden. Eine Adsorption der Lysinaminosäure an die SSC-APMS silanisierten SiO2- Oberflächen als Funktion des
pH-Wertes wurde durchgeführt, und der Adsorbatsanteil des Lysins mittels XPS-Messung durch die Bindungsenergien der Energieniveaus C1s und N1s berechnet.
Eine Referenzlösung mit QDots R800-Farbstoff markierten Östrogenmolekülen kommt zum Einsatz. Dabei wird die Position 17 des β-Estradiolmoleküls, welches mit einem N-Hydroxysuccinimide Derivat versehen ist, an das Hüllenmolekül des QDots R800-Farbstoff gebunden, sodass der Phenolring des β-Estradiols frei bleibt. Insbesondere ist bei den FTIR-Spektren eine nichtgebunden OH-Gruppe des β-Estradiolmoleküls gut erkennbar. Das gesamte Sensorkonzept wurde an zwei mit Östrogen mit einer Konzentration von 1mM und 1μM versetzten Wasserproben getestet. Die Anordnung der Bio-Komponenten wurde mittels PL nachgewiesen. Der Östrogennachweis wurde mit Hilfe des Ge- und Tb-basierten Lichtemitters demonstriert.
=== A sensor concept for estrogen detection in waterish solutions by Silicon based light emitters (MOSLED) was developed. This concept is based on direct fluorescence analysis and consists of a certain arrangement of the bio- components and their fabrication methods as well as the measurements protocol, which consists of for main steps: Passing the prepared MOSLED surface by the water sample, a washing step, passing the MOSLED surface by the reference solution, and the final optical measurement.
The arrangement consists of three parts: the functionalisation of the MOSLEDs surface, the immobilization of the hERff receptor und finally the fabrication of the reference solution.
The focus of this work is set on the achievement of these three parts.
The functionalisation of the SiO2-surface of the MOSLED was realized by means of the new developed SSC (Spraying Spin Coating) method. The chemical precursor of this method are the organofunctional silane groups with three different functional groups, namely the
amino-, carboxyl-, and thiolgroups. The optimization of the procedure was investigated with two types of silane groups APMS ((3-Aminopropyl)trimethoxysilane und Triamino-APMS
(N-[3-(Trimethoxysilyl)propyl]ethylenediamine), which have the same molecular structure but a different number of functional groups per molecule. These results have been compared with those of the literature. The optimization of the SSC-method was analyzed by
means of standard surface science techniques like FTIR-, Raman-, and XPS-spectroscopy.
The surface roughness was applied by using AFM-spectroscopy, which showed a smooth surface by the samples treated with the SSC-method. Whereas the hydrophobicity of the functionalized SiO2 surface increases, the surface energy decreases, which favours the binding of a hERff receptor with large binding energy.
In order to immobilize the hERff receptor at the surface, the receptor was bound to the molecular shell of the QDots655-dye and finally adsorbed to the silanized SiO2 surfaces. The
fraction of the immobilized hERff receptors was controlled via PL-measurements. Another
labelling strategy to immobilize the receptor at the SiO2 surface can be realized by using the amino acid as derivate to modify the receptor. For this aim the adsorption of the lysine
at silanized SiO2 surfaces was investigated as function of the pH-value. The adsorbent part of the lysine was calculated via XPS by measuring the binding energy of both energy levels C1s and N1s .
The reference solution with QDots800-dye marked estrogen molecules was used. The optimal binding was achieved by attaching the molecular shell of the QDots 800-dye to position 17 of the β-Estradiol molecule, which contains of a N-Hydroxysuccinimid derivate
so that the phenol ring of the β-Estradiol remains free. In particular the FTIR-spectra showed the non-binding OH-groups of the β-Estradiol molecule.
The whole concept of the sensor was tested at two water samples containing estrogen in a concentration of 1mM and 1μM. The adjustment of the Biokomponents was proven by PL, and the estrogen detection was demonstrated by using the Ge- and Tb-based light emitters. |
---|