Investigation of the biophysical basis for cell organelle morphology

It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing...

Full description

Bibliographic Details
Main Author: Mayer, Jürgen
Other Authors: Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Format: Dissertation
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2010
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600
http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-26600
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-266002013-01-07T19:52:24Z Investigation of the biophysical basis for cell organelle morphology Mayer, Jürgen morphology nucleus shape energy bending energy shape analysis Fourier series Fourier coordinate expansion data reduction elliptic approximation harmonic truncation pareto optimality Helfrich-Canham free energy fission yeast microtubules Schizosaccharomyces pombe mitosis confocal microscopy image analysis Morphologie Zellkern Konturenergie Biegeenergie Formanalyse Fourier-Serien Koordinatenweise Fourier-Entwicklung Datenreduktion elliptische Näherung harmonische Analyse pareto-Optimierung freie Energie nach Helfrich und Canham Mikrotubuli Mitose konfokale Mikroskopie Bildanalyse ddc:570 rvk:WD 2300 rvk:WC 7000 rvk:WE 5300 It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften Max-Planck-Institut für Molekulare Zellbiologie und Genetik, Howard group Prof. Dr. Jonathon Howard Dr. Khaled Khairy Prof. Jonathon Howard Prof. Petra Schwille 2010-02-09 doc-type:masterThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 urn:nbn:de:bsz:14-qucosa-26600 PPN318581884 http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf eng
collection NDLTD
language English
format Dissertation
sources NDLTD
topic morphology
nucleus
shape energy
bending energy
shape analysis
Fourier series
Fourier coordinate expansion
data reduction
elliptic approximation
harmonic truncation
pareto optimality
Helfrich-Canham free energy
fission yeast
microtubules
Schizosaccharomyces pombe
mitosis
confocal microscopy
image analysis
Morphologie
Zellkern
Konturenergie
Biegeenergie
Formanalyse
Fourier-Serien
Koordinatenweise Fourier-Entwicklung
Datenreduktion
elliptische Näherung
harmonische Analyse
pareto-Optimierung
freie Energie nach Helfrich und Canham
Mikrotubuli
Mitose
konfokale Mikroskopie
Bildanalyse
ddc:570
rvk:WD 2300
rvk:WC 7000
rvk:WE 5300
spellingShingle morphology
nucleus
shape energy
bending energy
shape analysis
Fourier series
Fourier coordinate expansion
data reduction
elliptic approximation
harmonic truncation
pareto optimality
Helfrich-Canham free energy
fission yeast
microtubules
Schizosaccharomyces pombe
mitosis
confocal microscopy
image analysis
Morphologie
Zellkern
Konturenergie
Biegeenergie
Formanalyse
Fourier-Serien
Koordinatenweise Fourier-Entwicklung
Datenreduktion
elliptische Näherung
harmonische Analyse
pareto-Optimierung
freie Energie nach Helfrich und Canham
Mikrotubuli
Mitose
konfokale Mikroskopie
Bildanalyse
ddc:570
rvk:WD 2300
rvk:WC 7000
rvk:WE 5300
Mayer, Jürgen
Investigation of the biophysical basis for cell organelle morphology
description It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
author2 Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
author_facet Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Mayer, Jürgen
author Mayer, Jürgen
author_sort Mayer, Jürgen
title Investigation of the biophysical basis for cell organelle morphology
title_short Investigation of the biophysical basis for cell organelle morphology
title_full Investigation of the biophysical basis for cell organelle morphology
title_fullStr Investigation of the biophysical basis for cell organelle morphology
title_full_unstemmed Investigation of the biophysical basis for cell organelle morphology
title_sort investigation of the biophysical basis for cell organelle morphology
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2010
url http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600
http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf
work_keys_str_mv AT mayerjurgen investigationofthebiophysicalbasisforcellorganellemorphology
_version_ 1716471326482366464