Investigation of the biophysical basis for cell organelle morphology
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2010
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-26600 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-266002013-01-07T19:52:24Z Investigation of the biophysical basis for cell organelle morphology Mayer, Jürgen morphology nucleus shape energy bending energy shape analysis Fourier series Fourier coordinate expansion data reduction elliptic approximation harmonic truncation pareto optimality Helfrich-Canham free energy fission yeast microtubules Schizosaccharomyces pombe mitosis confocal microscopy image analysis Morphologie Zellkern Konturenergie Biegeenergie Formanalyse Fourier-Serien Koordinatenweise Fourier-Entwicklung Datenreduktion elliptische Näherung harmonische Analyse pareto-Optimierung freie Energie nach Helfrich und Canham Mikrotubuli Mitose konfokale Mikroskopie Bildanalyse ddc:570 rvk:WD 2300 rvk:WC 7000 rvk:WE 5300 It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften Max-Planck-Institut für Molekulare Zellbiologie und Genetik, Howard group Prof. Dr. Jonathon Howard Dr. Khaled Khairy Prof. Jonathon Howard Prof. Petra Schwille 2010-02-09 doc-type:masterThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 urn:nbn:de:bsz:14-qucosa-26600 PPN318581884 http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf eng |
collection |
NDLTD |
language |
English |
format |
Dissertation |
sources |
NDLTD |
topic |
morphology nucleus shape energy bending energy shape analysis Fourier series Fourier coordinate expansion data reduction elliptic approximation harmonic truncation pareto optimality Helfrich-Canham free energy fission yeast microtubules Schizosaccharomyces pombe mitosis confocal microscopy image analysis Morphologie Zellkern Konturenergie Biegeenergie Formanalyse Fourier-Serien Koordinatenweise Fourier-Entwicklung Datenreduktion elliptische Näherung harmonische Analyse pareto-Optimierung freie Energie nach Helfrich und Canham Mikrotubuli Mitose konfokale Mikroskopie Bildanalyse ddc:570 rvk:WD 2300 rvk:WC 7000 rvk:WE 5300 |
spellingShingle |
morphology nucleus shape energy bending energy shape analysis Fourier series Fourier coordinate expansion data reduction elliptic approximation harmonic truncation pareto optimality Helfrich-Canham free energy fission yeast microtubules Schizosaccharomyces pombe mitosis confocal microscopy image analysis Morphologie Zellkern Konturenergie Biegeenergie Formanalyse Fourier-Serien Koordinatenweise Fourier-Entwicklung Datenreduktion elliptische Näherung harmonische Analyse pareto-Optimierung freie Energie nach Helfrich und Canham Mikrotubuli Mitose konfokale Mikroskopie Bildanalyse ddc:570 rvk:WD 2300 rvk:WC 7000 rvk:WE 5300 Mayer, Jürgen Investigation of the biophysical basis for cell organelle morphology |
description |
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry.
Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images. |
author2 |
Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften |
author_facet |
Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften Mayer, Jürgen |
author |
Mayer, Jürgen |
author_sort |
Mayer, Jürgen |
title |
Investigation of the biophysical basis for cell organelle morphology |
title_short |
Investigation of the biophysical basis for cell organelle morphology |
title_full |
Investigation of the biophysical basis for cell organelle morphology |
title_fullStr |
Investigation of the biophysical basis for cell organelle morphology |
title_full_unstemmed |
Investigation of the biophysical basis for cell organelle morphology |
title_sort |
investigation of the biophysical basis for cell organelle morphology |
publisher |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
publishDate |
2010 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26600 http://www.qucosa.de/fileadmin/data/qucosa/documents/2660/DiplomaThesis_JuergenFinalVersion.pdf |
work_keys_str_mv |
AT mayerjurgen investigationofthebiophysicalbasisforcellorganellemorphology |
_version_ |
1716471326482366464 |