Engineering Nanotechnological Applications of Biomolecular Motors and Microtubules
Biomolecular motor based transport reconstituted in synthetic environment has been recently established as a promising component for the development of nanoscale devices. A minimal system consisting of microtubules propelled over a surface of immobilized kinesin motor proteins has been used to trans...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2018
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232539 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232539 http://www.qucosa.de/fileadmin/data/qucosa/documents/23253/Chaudhuri_Thesis_2018_pdfa.pdf |
Summary: | Biomolecular motor based transport reconstituted in synthetic environment has been recently established as a promising component for the development of nanoscale devices. A minimal system consisting of microtubules propelled over a surface of immobilized kinesin motor proteins has been used to transport and manipulate cargo for molecular sorting, analyte detection, and other novel nanotechnological applications. Despite these achievements, further progress of the field and translation of the reported applications to a real-world setting require overcoming several key challenges, such as, development of effective cargo conjugation strategies and precise control of the transport directionality with the reconstituted biomolecular motor systems.
The challenge of cargo conjugation is addressed in this thesis through the development of a robust bioorthogonal strategy to functionalize microtubules. The versatility of the developed method is demonstrated by covalently conjugating various types of cargos to microtubules. Further, the effect of the linker length on cargo attachment to microtubules is investigated by attaching cargo to microtubules via linkers of different lengths. By using kinesin-driven transport of microtubules that are covalently conjugated to antibodies, detection of various clinically relevant analytes is demonstrated as proof-of-principle applications for biosensing. Finally, the challenge of gaining control over transport directionality is addressed through topographical guiding of microtubules in nanostructures, and optimization of assay parameters to achieve successful guiding of microtubules. Spatio-temporal analyte concentration, using transport in these nanostructues, is also explored to make the biomolecular-motor based applications more suitable for use real-world point-of-care setting.
Taken together, the experimental work in this thesis contributes to the field of nanotechnological applications of biomolecular motors. The developed microtubule functionalization method and understanding of the effect of cargo attachment via linkers provide useful design principles for efficient cargo loading to microtubules.
Moreover, establishment of assay components for successful guiding of microtubules in nanostructures is a vital step forward for practical translation of future nanoscale devices. |
---|