Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode ma...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2017
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494 http://www.qucosa.de/fileadmin/data/qucosa/documents/22649/MilenaMartine-DrArbeit.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-226494 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Raumtemperatur Natrium-Batterien negative Elektrodenmaterialien Zinn-Antimon-Pulver raumtemperatur ternare Phase diagram Na-Sn-Sb room temperature sodium battery negative electrode material tin-antimony powders room temperature Na-Sn-Sb ternary phase diagram ddc:620 rvk:ZN 8730 |
spellingShingle |
Raumtemperatur Natrium-Batterien negative Elektrodenmaterialien Zinn-Antimon-Pulver raumtemperatur ternare Phase diagram Na-Sn-Sb room temperature sodium battery negative electrode material tin-antimony powders room temperature Na-Sn-Sb ternary phase diagram ddc:620 rvk:ZN 8730 Martine, Milena Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
description |
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss.
Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product.
Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries. === Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend.
Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus.
Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln. |
author2 |
Technische Universität Dresden, Fakultät Maschinenwesen |
author_facet |
Technische Universität Dresden, Fakultät Maschinenwesen Martine, Milena |
author |
Martine, Milena |
author_sort |
Martine, Milena |
title |
Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
title_short |
Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
title_full |
Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
title_fullStr |
Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
title_full_unstemmed |
Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications |
title_sort |
na-sb-sn-based negative electrode materials for room temperature sodium cells for stationary applications |
publisher |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
publishDate |
2017 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494 http://www.qucosa.de/fileadmin/data/qucosa/documents/22649/MilenaMartine-DrArbeit.pdf |
work_keys_str_mv |
AT martinemilena nasbsnbasednegativeelectrodematerialsforroomtemperaturesodiumcellsforstationaryapplications |
_version_ |
1718495260973203456 |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-2264942017-07-12T03:33:56Z Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications Martine, Milena Raumtemperatur Natrium-Batterien negative Elektrodenmaterialien Zinn-Antimon-Pulver raumtemperatur ternare Phase diagram Na-Sn-Sb room temperature sodium battery negative electrode material tin-antimony powders room temperature Na-Sn-Sb ternary phase diagram ddc:620 rvk:ZN 8730 The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss. Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product. Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries. Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend. Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus. Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Maschinenwesen Prof. Dr. Jürgen Eckert Prof. Dr. Jürgen Eckert Prof. Dr. SoHyun Park 2017-06-27 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494 urn:nbn:de:bsz:14-qucosa-226494 PPN490718361 http://www.qucosa.de/fileadmin/data/qucosa/documents/22649/MilenaMartine-DrArbeit.pdf eng |