Search for 2nbb Excited State Transitions and HPGe Characterization for Surface Events in GERDA Phase II
The search for the neutrinoless double beta (0nbb) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally o...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2016
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199454 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199454 http://www.qucosa.de/fileadmin/data/qucosa/documents/19945/PhDThesis_blehnert_published.pdf |
Summary: | The search for the neutrinoless double beta (0nbb) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally observed quantity is the half-life of the decay, which can be connected to the effective Majorana neutrino mass via nuclear matrix elements. The latter can only be determined theoretically and are currently affected by large uncertainties. To reduce these uncertainties one can investigate the well established two-neutrino double beta (2nbb) decay into the ground and excited states of the daughter isotope. These similar processes are allowed within the Standard Model.
In this dissertation, the search for 2nbb decays into excited states is performed in Pd-110, Pd-102 and Ge-76. Three gamma spectroscopy setups at the Felsenkeller (Germany), HADES (Belgium) and LNGS (Italy) underground laboratories are used to search for the transitions in Pd-110 and Pd-102. No signal is observed leading to lower half-live bounds (90% C.I.) of 2.9e20 yr, 3.9e20 yr and 2.9e20 yr for the 0/2nbb 2p1, 0p1 and 2p2 transitions in Pd-110 and 7.9e18 yr, 9.2e18 yr and 1.5e19 yr for the 0/2nbb 2p1, 0p1 and 2p2 transitions in Pd-102, respectively. This is a factor of 1.3 to 3 improvement compared to previous limits. The data of Phase I (Nov 2011 - May 2013) of the 0nbb decay experiment GERDA at LNGS is used to search for excited state transitions in Ge-76. The analysis is based on coincidences between two detectors and finds no signal. Lower half-life limits (90 % C.L.) of 1.6e23 yr, 3.7e23 yr and 2.3e23 yr are obtained for the 2nbb 2p1, 0p1 and 2p2 transitions, respectively. These limits are more than two orders of magnitude larger than previous ones and could exclude many old matrix element calculations.
In addition to the excited state searches, important measurements and improvements for GERDA Phase II upgrades are performed within this dissertation. 30 new BEGe detectors are characterized for their surface and active volume properties which is an essential ingredient for all future physics analyses in GERDA. These precision measurements reduce the systematic uncertainty of the active volume to a subdominant level. In extension to this, a new model for simulating pulse shapes of n+ electrode surface events is developed. With this model it is demonstrated that the dominant background of K-42 on the detector surfaces can be suppressed by a factor of 145 with an A/E pulse shape cut in Phase II. A further suppression of background is obtained by a liquid argon scintillation light veto. With newly developed Monte Carlo simulations, including the optical scintillation photons, it is demonstrated that Tl-208 in the detectors holders can be suppressed by a factor of 134. K-42 homogeneously distributed in the LAr can be suppressed with this veto in combination with pulse shape cuts by a factor of 170 for BEGe detectors. The characterization measurements and the developed simulation tools presented within this dissertation will help to enhance the sensitivity for all 0/2nbb decay modes and will allow to construct an improved background model in GERDA Phase II. === Die Suche nach dem neutrinolosen Doppelbetazerfall (0nbb) ist eines der aktivsten Felder der modernen Teilchenphysik. Der Zerfall setzt die Verletzung der Leptonenzahl voraus und hätte die Majorananatur des Neutrinos zur Folge. Die durch eine Beobachtung bestimmbare Halbwertszeit des Zerfalls ermöglicht, über ein nukleares Matrixelement, Zugang zur effektiven Majorananeutrinomasse. Die größten Unsicherheiten gehen dabei auf das Matrixelement zurück, welches nur durch verschiedene, teilweise stark voneinander abweichende theoretische Modelle zugänglich ist. Eine Möglichkeit diese Unsicherheiten zu reduzieren bieten genaue Studien des im Standardmodel erlaubten neutrinobegleiteten Doppelbetazerfalls (2nbb) in angeregte Zustände des Tochterkerns.
In dieser Dissertation wird der 2nbb-Zerfall der Nuklide Pd-110, Pd-102 und Ge-76 in angeregte Zustände untersucht. Die Untersuchungen von Pd-110 und Pd-102 wurden in drei umfangreichen Gammaspektroskopie-Experimenten in den Untergrundlaboren Felsenkeller (Deutschland), HADES (Belgien) und LNGS (Italien) durchgefürt. Es wurde kein Signal beobachtet und damit die weltweit besten unteren Grenzen für die Halbwertszeit dieser Zerfälle festgesetzt: 2,9e20 yr, 3,9e20 yr und 2,9e20 yr für die 0/2nbb 2p1, 0p1 und 2p2 Übergänge in Pd-110 and 7,9e18 yr, 9,2e18 yr und 1,5e19 yr für die 0/2nbb 2p1, 0p1 und 2p2 Übergänge in Pd-102 (90% C.I.). Dies ist eine 1,3 bis 3-fache Verbesserung gegenüber den vorher bekannten Grenzen. Die Untersuchung des 2nbb-Zerfalls in Ge-76 basiert auf Daten aus Phase I (Nov. 2011 - Mai 2013) des 0nbb-Zerfall Experiments GERDA. Mit der auf koinzidenten Ereignissen basierten Analyse konnte kein Signal beobachtet werden und folgende untere Grenzen für die Halbwertszeit der 2nbb 2p1, 0p1 und 2p2 Übergänge wurden festgelegt: 1,6e23 yr, 3,7e23 yr und 2,3e23 (90% C.L.). Diese 100-fache Verbesserung gegenüber den bisher bekannten Grenzen widerlegt eine Vielzahl älterer, zur Verfügung stehender Matrixelemente.
Zusätzlich wurden im Rahmen dieser Dissertation für die Erweiterungen des GERDA Experiments zur Phase II wichtige Messungen durchgeführt und Verbesserungen entwickelt. 30 neu produzierte BEGe Detektoren wurden hinsichtlich ihrer Oberflächeneigenschaften sowie ihrer aktiven Volumina charakterisiert. Diese Präzisisionsmessungen sind für alle zukünftigen Analysen in GERDA notwendig und erlauben die entsprechenden systematischen Unsicherheiten auf ein subdominantes Niveau zu reduzieren. Erweiternd wurde ein neues Model zur Beschreibung der n+ Elektrode entwickelt, welches erstmals erlaubt die Pulsform von Oberflächeninteraktionen zu simulieren. Mithilfe dieses Models konnte demonstriert werden, dass der in Oberflächeninteraktionen begründete und in GERDA dominante Messuntergrund von K-42 auf der Detektoroberfläche durch Pulsformanalyse um das 145-fache unterdrückt werden kann. Eine weitere Untergrundreduzierung wird durch ein Flüssigargon Szintillationsveto erreicht. Im Rahmen dieser Arbeit wurden vorhandene Monte Carlo Simulationen um den Transport von optischen Photonen erweitert und die 134-fache Unterdrückung des Tl-208 Untergrundes demonstriert. Die Ergebnisse dieser Arbeit helfen eine deutliche Sensitivitätsverbesserung für die zuküntige Suche nach dem 0/2nbb-Zerfall zu erzielen und erlauben die Erstellung eines präziseren Untergrundmodels in GERDA Phase II. |
---|