Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen

This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic si...

Full description

Bibliographic Details
Main Author: Mettke, Philipp
Other Authors: Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List"
Format: Others
Language:deu
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2016
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197876
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197876
http://www.qucosa.de/fileadmin/data/qucosa/documents/19787/BA_Philipp_Mettke.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-197876
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-1978762016-07-20T03:29:45Z Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen Predictability of economic time series on different time scales. Mettke, Philipp Vorhersagbarkeitsmaße Diskrete Wavelet-Transformation (DWT) Singulärsystemanalyse (SSA) Empirische Modenzerlegung (EMD) Entropie Rekurrenzanalyse (RQA) Frequenzanalyse Discrete Wavelet Transformation (DWT) Singular Spectrum Analysis (SSA) Empirical Mode Decomposition (EMD) Entropy Predictability Recurrence Quantification Analysis (RQA) Frequency Analysis Time Series Analysis ddc:330 rvk:QH 320 This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic simulations are analysed as benchmark processes to the real data. Discrete wavelet transform (DWT) uses wavelike functions to adapt the behaviour of time series on different time scales. The second method is the singular spectral analysis (SSA), which is applied to extract influential reconstructed modes. As a third algorithm, empirical mode decomposition (END) leads to intrinsic mode functions, who reflect the short and long term fluctuations of the time series. Some problems arise in the decomposition process, such as bleeding at the DWT method or mode mixing of multiple EMD mode functions. Conclusions to evaluate the predictability of the time series are drawn based on entropy - and recurrence - analysis. The cyclic behaviour of the decompositions is examined via the coefficient of variation, based on the instantaneous frequency. The results show rising predictability, especially on higher decomposition levels. The instantaneous frequency measure leads to low values for regular oscillatory cycles, irregular behaviour results in a high variation coefficient. The singular spectral analysis show frequency - stable cycles in the reconstructed modes, but represents the influences of the original time series worse than the other two methods, which show on the contrary very little frequency - stability in the extracted details. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List" Dr. rer. nat. Reik Donner Prof. Dr. rer. pol. Ostap Okhrin 2016-04-05 doc-type:bachelorThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197876 urn:nbn:de:bsz:14-qucosa-197876 PPN474978133 PPN474978133 http://www.qucosa.de/fileadmin/data/qucosa/documents/19787/BA_Philipp_Mettke.pdf deu
collection NDLTD
language deu
format Others
sources NDLTD
topic Vorhersagbarkeitsmaße
Diskrete Wavelet-Transformation (DWT)
Singulärsystemanalyse (SSA)
Empirische Modenzerlegung (EMD)
Entropie
Rekurrenzanalyse (RQA)
Frequenzanalyse
Discrete Wavelet Transformation (DWT)
Singular Spectrum Analysis (SSA)
Empirical Mode Decomposition (EMD)
Entropy
Predictability
Recurrence Quantification Analysis (RQA)
Frequency Analysis
Time Series Analysis
ddc:330
rvk:QH 320
spellingShingle Vorhersagbarkeitsmaße
Diskrete Wavelet-Transformation (DWT)
Singulärsystemanalyse (SSA)
Empirische Modenzerlegung (EMD)
Entropie
Rekurrenzanalyse (RQA)
Frequenzanalyse
Discrete Wavelet Transformation (DWT)
Singular Spectrum Analysis (SSA)
Empirical Mode Decomposition (EMD)
Entropy
Predictability
Recurrence Quantification Analysis (RQA)
Frequency Analysis
Time Series Analysis
ddc:330
rvk:QH 320
Mettke, Philipp
Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
description This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic simulations are analysed as benchmark processes to the real data. Discrete wavelet transform (DWT) uses wavelike functions to adapt the behaviour of time series on different time scales. The second method is the singular spectral analysis (SSA), which is applied to extract influential reconstructed modes. As a third algorithm, empirical mode decomposition (END) leads to intrinsic mode functions, who reflect the short and long term fluctuations of the time series. Some problems arise in the decomposition process, such as bleeding at the DWT method or mode mixing of multiple EMD mode functions. Conclusions to evaluate the predictability of the time series are drawn based on entropy - and recurrence - analysis. The cyclic behaviour of the decompositions is examined via the coefficient of variation, based on the instantaneous frequency. The results show rising predictability, especially on higher decomposition levels. The instantaneous frequency measure leads to low values for regular oscillatory cycles, irregular behaviour results in a high variation coefficient. The singular spectral analysis show frequency - stable cycles in the reconstructed modes, but represents the influences of the original time series worse than the other two methods, which show on the contrary very little frequency - stability in the extracted details.
author2 Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List"
author_facet Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List"
Mettke, Philipp
author Mettke, Philipp
author_sort Mettke, Philipp
title Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
title_short Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
title_full Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
title_fullStr Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
title_full_unstemmed Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen
title_sort vorhersagbarkeit ökonomischer zeitreihen auf verschiedenen zeitlichen skalen
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197876
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197876
http://www.qucosa.de/fileadmin/data/qucosa/documents/19787/BA_Philipp_Mettke.pdf
work_keys_str_mv AT mettkephilipp vorhersagbarkeitokonomischerzeitreihenaufverschiedenenzeitlichenskalen
AT mettkephilipp predictabilityofeconomictimeseriesondifferenttimescales
_version_ 1718353751353327616