Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip

In this work concepts and circuits for local clock generation in low-power heterogeneous multiprocessor systems-on-chip (MPSoCs) are researched and developed. The targeted systems feature a globally asynchronous locally synchronous (GALS) clocking architecture and advanced power management functiona...

Full description

Bibliographic Details
Main Author: Höppner, Sebastian
Other Authors: Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik
Format: Doctoral Thesis
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2016
Subjects:
PLL
DCO
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193156
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193156
http://www.qucosa.de/fileadmin/data/qucosa/documents/19315/hoeppner_2013_dissertation.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-193156
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic MPSoC
Takterzeugung
PLL
ADPLL
DCO
DVFS
MPSoC
clock generation
PLL
ADPLL
DCO
DVFS
ddc:621
rvk:ZN 5490
spellingShingle MPSoC
Takterzeugung
PLL
ADPLL
DCO
DVFS
MPSoC
clock generation
PLL
ADPLL
DCO
DVFS
ddc:621
rvk:ZN 5490
Höppner, Sebastian
Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
description In this work concepts and circuits for local clock generation in low-power heterogeneous multiprocessor systems-on-chip (MPSoCs) are researched and developed. The targeted systems feature a globally asynchronous locally synchronous (GALS) clocking architecture and advanced power management functionality, as for example fine-grained ultra-fast dynamic voltage and frequency scaling (DVFS). To enable this functionality compact clock generators with low chip area, low power consumption, wide output frequency range and the capability for ultra-fast frequency changes are required. They are to be instantiated individually per core. For this purpose compact all digital phase-locked loop (ADPLL) frequency synthesizers are developed. The bang-bang ADPLL architecture is analyzed using a numerical system model and optimized for low jitter accumulation. A 65nm CMOS ADPLL is implemented, featuring a novel active current bias circuit which compensates the supply voltage and temperature sensitivity of the digitally controlled oscillator (DCO) for reduced digital tuning effort. Additionally, a 28nm ADPLL with a new ultra-fast lock-in scheme based on single-shot phase synchronization is proposed. The core clock is generated by an open-loop method using phase-switching between multi-phase DCO clocks at a fixed frequency. This allows instantaneous core frequency changes for ultra-fast DVFS without re-locking the closed loop ADPLL. The sensitivity of the open-loop clock generator with respect to phase mismatch is analyzed analytically and a compensation technique by cross-coupled inverter buffers is proposed. The clock generators show small area (0.0097mm2 (65nm), 0.00234mm2 (28nm)), low power consumption (2.7mW (65nm), 0.64mW (28nm)) and they provide core clock frequencies from 83MHz to 666MHz which can be changed instantaneously. The jitter performance is compliant to DDR2/DDR3 memory interface specifications. Additionally, high-speed clocks for novel serial on-chip data transceivers are generated. The ADPLL circuits have been verified successfully by 3 testchip implementations. They enable efficient realization of future low-power MPSoCs with advanced power management functionality in deep-submicron CMOS technologies. === In dieser Arbeit werden Konzepte und Schaltungen zur lokalen Takterzeugung in heterogenen Multiprozessorsystemen (MPSoCs) mit geringer Verlustleistung erforscht und entwickelt. Diese Systeme besitzen eine global-asynchrone lokal-synchrone Architektur sowie Funktionalität zum Power Management, wie z.B. das feingranulare, schnelle Skalieren von Spannung und Taktfrequenz (DVFS). Um diese Funktionalität zu realisieren werden kompakte Taktgeneratoren benötigt, welche eine kleine Chipfläche einnehmen, wenig Verlustleitung aufnehmen, einen weiten Bereich an Ausgangsfrequenzen erzeugen und diese sehr schnell ändern können. Sie sollen individuell pro Prozessorkern integriert werden. Dazu werden kompakte volldigitale Phasenregelkreise (ADPLLs) entwickelt, wobei eine bang-bang ADPLL Architektur numerisch modelliert und für kleine Jitterakkumulation optimiert wird. Es wird eine 65nm CMOS ADPLL implementiert, welche eine neuartige Kompensationsschlatung für den digital gesteuerten Oszillator (DCO) zur Verringerung der Sensitivität bezüglich Versorgungsspannung und Temperatur beinhaltet. Zusätzlich wird eine 28nm CMOS ADPLL mit einer neuen Technik zum schnellen Einschwingen unter Nutzung eines Phasensynchronisierers realisiert. Der Prozessortakt wird durch ein neuartiges Phasenmultiplex- und Frequenzteilerverfahren erzeugt, welches es ermöglicht die Taktfrequenz sofort zu ändern um schnelles DVFS zu realisieren. Die Sensitivität dieses Frequenzgenerators bezüglich Phasen-Mismatch wird theoretisch analysiert und durch Verwendung von kreuzgekoppelten Taktverstärkern kompensiert. Die hier entwickelten Taktgeneratoren haben eine kleine Chipfläche (0.0097mm2 (65nm), 0.00234mm2 (28nm)) und Leistungsaufnahme (2.7mW (65nm), 0.64mW (28nm)). Sie stellen Frequenzen von 83MHz bis 666MHz bereit, welche sofort geändert werden können. Die Schaltungen erfüllen die Jitterspezifikationen von DDR2/DDR3 Speicherinterfaces. Zusätzliche können schnelle Takte für neuartige serielle on-Chip Verbindungen erzeugt werden. Die ADPLL Schaltungen wurden erfolgreich in 3 Testchips erprobt. Sie ermöglichen die effiziente Realisierung von zukünftigen MPSoCs mit Power Management in modernsten CMOS Technologien.
author2 Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik
author_facet Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik
Höppner, Sebastian
author Höppner, Sebastian
author_sort Höppner, Sebastian
title Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
title_short Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
title_full Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
title_fullStr Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
title_full_unstemmed Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip
title_sort clock generator circuits for low-power heterogeneous multiprocessor systems-on-chip
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193156
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193156
http://www.qucosa.de/fileadmin/data/qucosa/documents/19315/hoeppner_2013_dissertation.pdf
work_keys_str_mv AT hoppnersebastian clockgeneratorcircuitsforlowpowerheterogeneousmultiprocessorsystemsonchip
_version_ 1718617131979898880
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-1931562018-03-24T03:28:08Z Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip Höppner, Sebastian MPSoC Takterzeugung PLL ADPLL DCO DVFS MPSoC clock generation PLL ADPLL DCO DVFS ddc:621 rvk:ZN 5490 In this work concepts and circuits for local clock generation in low-power heterogeneous multiprocessor systems-on-chip (MPSoCs) are researched and developed. The targeted systems feature a globally asynchronous locally synchronous (GALS) clocking architecture and advanced power management functionality, as for example fine-grained ultra-fast dynamic voltage and frequency scaling (DVFS). To enable this functionality compact clock generators with low chip area, low power consumption, wide output frequency range and the capability for ultra-fast frequency changes are required. They are to be instantiated individually per core. For this purpose compact all digital phase-locked loop (ADPLL) frequency synthesizers are developed. The bang-bang ADPLL architecture is analyzed using a numerical system model and optimized for low jitter accumulation. A 65nm CMOS ADPLL is implemented, featuring a novel active current bias circuit which compensates the supply voltage and temperature sensitivity of the digitally controlled oscillator (DCO) for reduced digital tuning effort. Additionally, a 28nm ADPLL with a new ultra-fast lock-in scheme based on single-shot phase synchronization is proposed. The core clock is generated by an open-loop method using phase-switching between multi-phase DCO clocks at a fixed frequency. This allows instantaneous core frequency changes for ultra-fast DVFS without re-locking the closed loop ADPLL. The sensitivity of the open-loop clock generator with respect to phase mismatch is analyzed analytically and a compensation technique by cross-coupled inverter buffers is proposed. The clock generators show small area (0.0097mm2 (65nm), 0.00234mm2 (28nm)), low power consumption (2.7mW (65nm), 0.64mW (28nm)) and they provide core clock frequencies from 83MHz to 666MHz which can be changed instantaneously. The jitter performance is compliant to DDR2/DDR3 memory interface specifications. Additionally, high-speed clocks for novel serial on-chip data transceivers are generated. The ADPLL circuits have been verified successfully by 3 testchip implementations. They enable efficient realization of future low-power MPSoCs with advanced power management functionality in deep-submicron CMOS technologies. In dieser Arbeit werden Konzepte und Schaltungen zur lokalen Takterzeugung in heterogenen Multiprozessorsystemen (MPSoCs) mit geringer Verlustleistung erforscht und entwickelt. Diese Systeme besitzen eine global-asynchrone lokal-synchrone Architektur sowie Funktionalität zum Power Management, wie z.B. das feingranulare, schnelle Skalieren von Spannung und Taktfrequenz (DVFS). Um diese Funktionalität zu realisieren werden kompakte Taktgeneratoren benötigt, welche eine kleine Chipfläche einnehmen, wenig Verlustleitung aufnehmen, einen weiten Bereich an Ausgangsfrequenzen erzeugen und diese sehr schnell ändern können. Sie sollen individuell pro Prozessorkern integriert werden. Dazu werden kompakte volldigitale Phasenregelkreise (ADPLLs) entwickelt, wobei eine bang-bang ADPLL Architektur numerisch modelliert und für kleine Jitterakkumulation optimiert wird. Es wird eine 65nm CMOS ADPLL implementiert, welche eine neuartige Kompensationsschlatung für den digital gesteuerten Oszillator (DCO) zur Verringerung der Sensitivität bezüglich Versorgungsspannung und Temperatur beinhaltet. Zusätzlich wird eine 28nm CMOS ADPLL mit einer neuen Technik zum schnellen Einschwingen unter Nutzung eines Phasensynchronisierers realisiert. Der Prozessortakt wird durch ein neuartiges Phasenmultiplex- und Frequenzteilerverfahren erzeugt, welches es ermöglicht die Taktfrequenz sofort zu ändern um schnelles DVFS zu realisieren. Die Sensitivität dieses Frequenzgenerators bezüglich Phasen-Mismatch wird theoretisch analysiert und durch Verwendung von kreuzgekoppelten Taktverstärkern kompensiert. Die hier entwickelten Taktgeneratoren haben eine kleine Chipfläche (0.0097mm2 (65nm), 0.00234mm2 (28nm)) und Leistungsaufnahme (2.7mW (65nm), 0.64mW (28nm)). Sie stellen Frequenzen von 83MHz bis 666MHz bereit, welche sofort geändert werden können. Die Schaltungen erfüllen die Jitterspezifikationen von DDR2/DDR3 Speicherinterfaces. Zusätzliche können schnelle Takte für neuartige serielle on-Chip Verbindungen erzeugt werden. Die ADPLL Schaltungen wurden erfolgreich in 3 Testchips erprobt. Sie ermöglichen die effiziente Realisierung von zukünftigen MPSoCs mit Power Management in modernsten CMOS Technologien. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik Prof. Dr.-Ing. habil. René Schüffny Prof. Dr.-Ing. habil. René Schüffny Prof. Dr.-Ing. Ulrich Rückert 2016-03-14 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193156 urn:nbn:de:bsz:14-qucosa-193156 isbn:978-3-944331-20-1 PPN501381813 http://www.qucosa.de/fileadmin/data/qucosa/documents/19315/hoeppner_2013_dissertation.pdf eng