Allocation Strategies for Data-Oriented Architectures

Data orientation is a common design principle in distributed data management systems. In contrast to process-oriented or transaction-oriented system designs, data-oriented architectures are based on data locality and function shipping. The tight coupling of data and processing thereon is implemented...

Full description

Bibliographic Details
Main Author: Kiefer, Tim
Other Authors: Technische Universität Dresden, Fakultät Informatik
Format: Doctoral Thesis
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2016
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193008
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193008
http://www.qucosa.de/fileadmin/data/qucosa/documents/19300/diss_pdfa.pdf
Description
Summary:Data orientation is a common design principle in distributed data management systems. In contrast to process-oriented or transaction-oriented system designs, data-oriented architectures are based on data locality and function shipping. The tight coupling of data and processing thereon is implemented in different systems in a variety of application scenarios such as data analysis, database-as-a-service, and data management on multiprocessor systems. Data-oriented systems, i.e., systems that implement a data-oriented architecture, bundle data and operations together in tasks which are processed locally on the nodes of the distributed system. Allocation strategies, i.e., methods that decide the mapping from tasks to nodes, are core components in data-oriented systems. Good allocation strategies can lead to balanced systems while bad allocation strategies cause skew in the load and therefore suboptimal application performance and infrastructure utilization. Optimal allocation strategies are hard to find given the complexity of the systems, the complicated interactions of tasks, and the huge solution space. To ensure the scalability of data-oriented systems and to keep them manageable with hundreds of thousands of tasks, thousands of nodes, and dynamic workloads, fast and reliable allocation strategies are mandatory. In this thesis, we develop novel allocation strategies for data-oriented systems based on graph partitioning algorithms. Therefore, we show that systems from different application scenarios with different abstraction levels can be generalized to generic infrastructure and workload descriptions. We use weighted graph representations to model infrastructures with bounded and unbounded, i.e., overcommited, resources and possibly non-linear performance characteristics. Based on our generalized infrastructure and workload model, we formalize the allocation problem, which seeks valid and balanced allocations that minimize communication. Our allocation strategies partition the workload graph using solution heuristics that work with single and multiple vertex weights. Novel extensions to these solution heuristics can be used to balance penalized and secondary graph partition weights. These extensions enable the allocation strategies to handle infrastructures with non-linear performance behavior. On top of the basic algorithms, we propose methods to incorporate heterogeneous infrastructures and to react to changing workloads and infrastructures by incrementally updating the partitioning. We evaluate all components of our allocation strategy algorithms and show their applicability and scalability with synthetic workload graphs. In end-to-end--performance experiments in two actual data-oriented systems, a database-as-a-service system and a database management system for multiprocessor systems, we prove that our allocation strategies outperform alternative state-of-the-art methods.