Bifurcations of families of 1-tori in 4D symplectic maps

The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized ar...

Full description

Bibliographic Details
Main Author: Onken, Franziska
Other Authors: Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Format: Dissertation
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2015
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175120
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175120
http://www.qucosa.de/fileadmin/data/qucosa/documents/17512/Masterarbeit_FranziskaOnken_2015.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-175120
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-1751202016-01-07T03:29:31Z Bifurcations of families of 1-tori in 4D symplectic maps Onken, Franziska Hamilton'sche Systeme höherdimensionale Systeme Bifurkationen niederdimensionale invariante Tori Hamiltonian Systems higher-dimensional Systems Bifurkationen lower-dimensional invariant tori ddc:530 rvk:UO 4020 The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften Dr. Arnd Bäcker Dr. Arnd Bäcker Prof. Dr. Roland Ketzmerick 2015-08-14 doc-type:masterThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175120 urn:nbn:de:bsz:14-qucosa-175120 http://www.qucosa.de/fileadmin/data/qucosa/documents/17512/Masterarbeit_FranziskaOnken_2015.pdf eng
collection NDLTD
language English
format Dissertation
sources NDLTD
topic Hamilton'sche Systeme
höherdimensionale Systeme
Bifurkationen
niederdimensionale invariante Tori
Hamiltonian Systems
higher-dimensional Systems
Bifurkationen
lower-dimensional invariant tori
ddc:530
rvk:UO 4020
spellingShingle Hamilton'sche Systeme
höherdimensionale Systeme
Bifurkationen
niederdimensionale invariante Tori
Hamiltonian Systems
higher-dimensional Systems
Bifurkationen
lower-dimensional invariant tori
ddc:530
rvk:UO 4020
Onken, Franziska
Bifurcations of families of 1-tori in 4D symplectic maps
description The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. === Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
author2 Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
author_facet Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Onken, Franziska
author Onken, Franziska
author_sort Onken, Franziska
title Bifurcations of families of 1-tori in 4D symplectic maps
title_short Bifurcations of families of 1-tori in 4D symplectic maps
title_full Bifurcations of families of 1-tori in 4D symplectic maps
title_fullStr Bifurcations of families of 1-tori in 4D symplectic maps
title_full_unstemmed Bifurcations of families of 1-tori in 4D symplectic maps
title_sort bifurcations of families of 1-tori in 4d symplectic maps
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2015
url http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175120
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175120
http://www.qucosa.de/fileadmin/data/qucosa/documents/17512/Masterarbeit_FranziskaOnken_2015.pdf
work_keys_str_mv AT onkenfranziska bifurcationsoffamiliesof1toriin4dsymplecticmaps
_version_ 1718160362647322624