Robust omniphobic surfaces by mimicking the springtail skin morphology
Springtails (Collembola) are wingless arthropods that are impressively adapted to cutaneous respiration in temporarily rain-flooded habitats by non-wetting skin morphology. Recapitulating the robust and effectively liquid-repellent surface characteristics of springtail skin in engineered materials m...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2014
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149179 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149179 http://www.qucosa.de/fileadmin/data/qucosa/documents/14917/hensel_pdfa.pdf |
Summary: | Springtails (Collembola) are wingless arthropods that are impressively adapted to cutaneous respiration in temporarily rain-flooded habitats by non-wetting skin morphology. Recapitulating the robust and effectively liquid-repellent surface characteristics of springtail skin in engineered materials may offer exciting opportunities for demanding applications. Herein, we present a strategy for mimicking morphological surface features of springtail skin in polymer membranes produced by reverse imprint lithography. We report the fabrication of multi-level silicon masters that, in turn, serve as templates for the replication of flexible polymer membranes. We examined the robust wetting characteristics of polymer membranes by in situ plastron collapse tests and condensation tests. The mechanical stability of the polymer membranes was tested using a tribometer set-up and compared with needle-shaped pillar structures made from similar material. The fabricated membranes are flexible, free-standing, and adaptable to various substrate materials and shapes that allow for emerging applications. |
---|