Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations

Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov cha...

Full description

Bibliographic Details
Main Authors: Buchholz, Peter, Dayar, Tuğrul
Other Authors: Technische Universität Dresden, Fakultät Informatik
Format: Others
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2013
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100508
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100508
http://www.qucosa.de/fileadmin/data/qucosa/documents/10050/tud_TB_2003-05.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-100508
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-1005082013-01-22T03:02:47Z Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations Buchholz, Peter Dayar, Tuğrul Markow-Ketten Matrizenrechnung Schurzerlegung Schur-Faktorisierung Algebra Markov chains Kronecker based numerical techniques block SOR preconditioning projection methods real Schur factorization COLAMD ordering ddc:004 rvk:SS 5514 Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Informatik 2013-01-15 doc-type:workingPaper application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100508 urn:nbn:de:bsz:14-qucosa-100508 issn:1430-211X PPN377769096 http://www.qucosa.de/fileadmin/data/qucosa/documents/10050/tud_TB_2003-05.pdf eng dcterms:isPartOf:Technische Berichte / Technische Universität Dresden, Fakultät Informatik ; 2003,05 (TUD-FI03-05 Mai 2003)
collection NDLTD
language English
format Others
sources NDLTD
topic Markow-Ketten
Matrizenrechnung
Schurzerlegung
Schur-Faktorisierung
Algebra
Markov chains
Kronecker based numerical techniques
block SOR
preconditioning
projection methods
real Schur factorization
COLAMD ordering
ddc:004
rvk:SS 5514
spellingShingle Markow-Ketten
Matrizenrechnung
Schurzerlegung
Schur-Faktorisierung
Algebra
Markov chains
Kronecker based numerical techniques
block SOR
preconditioning
projection methods
real Schur factorization
COLAMD ordering
ddc:004
rvk:SS 5514
Buchholz, Peter
Dayar, Tuğrul
Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
description Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner.
author2 Technische Universität Dresden, Fakultät Informatik
author_facet Technische Universität Dresden, Fakultät Informatik
Buchholz, Peter
Dayar, Tuğrul
author Buchholz, Peter
Dayar, Tuğrul
author_sort Buchholz, Peter
title Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
title_short Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
title_full Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
title_fullStr Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
title_full_unstemmed Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations
title_sort block sor preconditional projection methods for kronecker structured markovian representations
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2013
url http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100508
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100508
http://www.qucosa.de/fileadmin/data/qucosa/documents/10050/tud_TB_2003-05.pdf
work_keys_str_mv AT buchholzpeter blocksorpreconditionalprojectionmethodsforkroneckerstructuredmarkovianrepresentations
AT dayartugrul blocksorpreconditionalprojectionmethodsforkroneckerstructuredmarkovianrepresentations
_version_ 1716575658182705152