Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen

Die vorliegende Dissertation beschäftigt sich mit Wachstum und Aufbau von Fluorapatit-Gelatine-Nanokompositaggregaten. Diese Aggregate werden im sogenannten Doppeldiffusionsversuch biomimetisch erzeugt und ihre äußere Form bzw. Formentwicklung lässt sich anhand eines fraktalen Modells bis ins Detail...

Full description

Bibliographic Details
Main Author: Tlatlik, Harald
Other Authors: Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Format: Doctoral Thesis
Language:deu
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2009
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239970399481-29675
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239970399481-29675
http://www.qucosa.de/fileadmin/data/qucosa/documents/62/1239970399481-2967.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-14-ds-1239970399481-29675
record_format oai_dc
collection NDLTD
language deu
format Doctoral Thesis
sources NDLTD
topic Biomineralisation
Chemie
Fluorapatit
Biomimetik
Nanokomposite
Anorganisch-organische Hybridverbindungen
Computersimulation
Biominerlization
Chemistry
Fluorapatite
Biomimetics
Nano composites
Inorganic-organic hybrid compounds
Computer simulations
ddc:540
rvk:VE 9857
spellingShingle Biomineralisation
Chemie
Fluorapatit
Biomimetik
Nanokomposite
Anorganisch-organische Hybridverbindungen
Computersimulation
Biominerlization
Chemistry
Fluorapatite
Biomimetics
Nano composites
Inorganic-organic hybrid compounds
Computer simulations
ddc:540
rvk:VE 9857
Tlatlik, Harald
Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
description Die vorliegende Dissertation beschäftigt sich mit Wachstum und Aufbau von Fluorapatit-Gelatine-Nanokompositaggregaten. Diese Aggregate werden im sogenannten Doppeldiffusionsversuch biomimetisch erzeugt und ihre äußere Form bzw. Formentwicklung lässt sich anhand eines fraktalen Modells bis ins Detail nachvollziehen. Sie zeigen einen komplexen inneren Aufbau, in dem die Makromoleküle der organischen Komponente einerseits im Zentrum jeder Nanoeinheit und andererseits zu Strängen, den sogenannten Fibrillen, zusammengelagert am Aufbau der Kompositaggregate beteiligt sind. Im Fall des Kompositkeims ist die innere Architektur in hoher Detailstufe verstanden, auch wenn -- insbesondere bezüglich der späteren Wachstumsphasen -- eine Reihe ungeklärter Fragestellungen verbleibt. Ein zentrales Ergebnis der vorliegenden Arbeit bildet die Entdeckung eines weiteren Wachstumstypen, der im Vergleich zu den bekannten, fraktalen Kompositaggregaten grundsätzliche Unterschiede bezüglich des inneren und äußeren Aufbaus zeigt. Der Grund für die andersartige Formentwicklung liegt in der Versteifung der organischen Komponente durch eine vorangegangene Einlagerung von Calciumionen, wie sowohl experimentell als auch mit atomistischen Computersimulationen gezeigt werden konnte. Aufgrund der hohen Komplexität des Systems ist es bislang allerdings nicht möglich, lokale Ionen-Konzentrationen und pH-Werte vor bzw. während Nukleation und Wachstum der Kompositaggregate im Doppeldiffusionsversuch zu bestimmen. Deshalb wurde ein Ersatzversuch -- der sehr ähnlich strukturierte Aggregate erzeugt, sich aber mit rechnerischen Methoden analysieren lässt -- entworfen und untersucht. Anhand dieser Ergebnisse konnte erstmals die "Geschichte" von Fluorapatit-Gelatine-Nanokompositaggregaten detailliert nachvollzogen werden. Da über die Rolle der Gelatine beim Wachstum der Kompositaggregate nur wenig bekannt ist, wurde eine Reihe von Versuchen durchgeführt, in denen Gelatinen mit verschiedenen Molekülmassenverteilungen eingesetzt wurden. Es stellte sich heraus, dass für selbstorganisiertes und insbesondere fraktales Wachstum der Kompositaggregate lange, möglichst wenig gestörte Makromoleküle von zentraler Wichtigkeit sind. Um die Funktion der organischen Komponente für das Kompositwachstum näher zu untersuchen, wurden Oberflächen von Kompositkeimen mit rasterkraftmikroskopischen Methoden studiert. Durch Säuberung der Oberflächen konnten Austrittsstellen der organischen Komponente durch die Oberfläche der Kompositkeime identifiziert werden. Damit konnte gezeigt werden, dass die organische Komponente aus dem Inneren des Festkörpers teilweise durch die Oberfläche dringt und somit während des Wachstums weit in das Gel hineinreichen sollte. Für die mesoskopische Strukturbildung der Kompositaggregate spielen intrinsische elektrische Felder eine essenzielle Rolle. Deshalb wurde bislang eine Wirkung externer elektrischer Felder auf das Wachstum der Kompositaggregate vermutet. Im Rahmen der vorliegenden Arbeit wurde herausgearbeitet, dass es zwar zu keiner direkten Beeinflussung kommen kann, jedoch in den elektrodennahen Bereichen des Gels eine Ordnung der organischen Moleküle durch externe elektrische Felder zu erwarten ist. Dies könnte eine Wirkung auf wachsende Kompositaggregate zeigen. Da diese Effekte auch aufgrund der elektrischen Felder um die dipolaren Kompositaggregate zu erwarten sind, könnte eine ähnliche Strukturierung der Gelatine in der Nähe der wachsenden Kompositaggregate stattfinden. Insgesamt wurden in dieser Arbeit eine Reihe grundlegender Beiträge zur Erforschung der biomimetisch erzeugten Fluorapatit-Gelatine-Nanokompositaggregate geleistet. Es konnten neue Erkenntnisse zur inneren und äußeren Architektur der Kompositaggregate, zu Mechanismen der Morphogenese und deren wichtigsten Einflussgrößen sowie zum Verständnis der chemisch-physikalischen Vorgänge auf atomarer Größenskala gewonnen werden. Als besonders fruchtbar erwies sich die Verbindung von Experimenten mit theoretischen Untersuchungen, so dass dieser Weg auch in Zukunft grundlegende Erkenntnisse bei der Erforschung der Biomineralisation verspricht und weiterhin verfolgt werden sollte.
author2 Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
author_facet Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
Tlatlik, Harald
author Tlatlik, Harald
author_sort Tlatlik, Harald
title Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
title_short Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
title_full Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
title_fullStr Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
title_full_unstemmed Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen
title_sort neue untersuchungen zu wachstum und struktur von fluorapatit-gelatine-nanokompositen
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2009
url http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239970399481-29675
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239970399481-29675
http://www.qucosa.de/fileadmin/data/qucosa/documents/62/1239970399481-2967.pdf
work_keys_str_mv AT tlatlikharald neueuntersuchungenzuwachstumundstrukturvonfluorapatitgelatinenanokompositen
_version_ 1716470650437107712
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-14-ds-1239970399481-296752013-01-07T19:48:06Z Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen Tlatlik, Harald Biomineralisation Chemie Fluorapatit Biomimetik Nanokomposite Anorganisch-organische Hybridverbindungen Computersimulation Biominerlization Chemistry Fluorapatite Biomimetics Nano composites Inorganic-organic hybrid compounds Computer simulations ddc:540 rvk:VE 9857 Die vorliegende Dissertation beschäftigt sich mit Wachstum und Aufbau von Fluorapatit-Gelatine-Nanokompositaggregaten. Diese Aggregate werden im sogenannten Doppeldiffusionsversuch biomimetisch erzeugt und ihre äußere Form bzw. Formentwicklung lässt sich anhand eines fraktalen Modells bis ins Detail nachvollziehen. Sie zeigen einen komplexen inneren Aufbau, in dem die Makromoleküle der organischen Komponente einerseits im Zentrum jeder Nanoeinheit und andererseits zu Strängen, den sogenannten Fibrillen, zusammengelagert am Aufbau der Kompositaggregate beteiligt sind. Im Fall des Kompositkeims ist die innere Architektur in hoher Detailstufe verstanden, auch wenn -- insbesondere bezüglich der späteren Wachstumsphasen -- eine Reihe ungeklärter Fragestellungen verbleibt. Ein zentrales Ergebnis der vorliegenden Arbeit bildet die Entdeckung eines weiteren Wachstumstypen, der im Vergleich zu den bekannten, fraktalen Kompositaggregaten grundsätzliche Unterschiede bezüglich des inneren und äußeren Aufbaus zeigt. Der Grund für die andersartige Formentwicklung liegt in der Versteifung der organischen Komponente durch eine vorangegangene Einlagerung von Calciumionen, wie sowohl experimentell als auch mit atomistischen Computersimulationen gezeigt werden konnte. Aufgrund der hohen Komplexität des Systems ist es bislang allerdings nicht möglich, lokale Ionen-Konzentrationen und pH-Werte vor bzw. während Nukleation und Wachstum der Kompositaggregate im Doppeldiffusionsversuch zu bestimmen. Deshalb wurde ein Ersatzversuch -- der sehr ähnlich strukturierte Aggregate erzeugt, sich aber mit rechnerischen Methoden analysieren lässt -- entworfen und untersucht. Anhand dieser Ergebnisse konnte erstmals die "Geschichte" von Fluorapatit-Gelatine-Nanokompositaggregaten detailliert nachvollzogen werden. Da über die Rolle der Gelatine beim Wachstum der Kompositaggregate nur wenig bekannt ist, wurde eine Reihe von Versuchen durchgeführt, in denen Gelatinen mit verschiedenen Molekülmassenverteilungen eingesetzt wurden. Es stellte sich heraus, dass für selbstorganisiertes und insbesondere fraktales Wachstum der Kompositaggregate lange, möglichst wenig gestörte Makromoleküle von zentraler Wichtigkeit sind. Um die Funktion der organischen Komponente für das Kompositwachstum näher zu untersuchen, wurden Oberflächen von Kompositkeimen mit rasterkraftmikroskopischen Methoden studiert. Durch Säuberung der Oberflächen konnten Austrittsstellen der organischen Komponente durch die Oberfläche der Kompositkeime identifiziert werden. Damit konnte gezeigt werden, dass die organische Komponente aus dem Inneren des Festkörpers teilweise durch die Oberfläche dringt und somit während des Wachstums weit in das Gel hineinreichen sollte. Für die mesoskopische Strukturbildung der Kompositaggregate spielen intrinsische elektrische Felder eine essenzielle Rolle. Deshalb wurde bislang eine Wirkung externer elektrischer Felder auf das Wachstum der Kompositaggregate vermutet. Im Rahmen der vorliegenden Arbeit wurde herausgearbeitet, dass es zwar zu keiner direkten Beeinflussung kommen kann, jedoch in den elektrodennahen Bereichen des Gels eine Ordnung der organischen Moleküle durch externe elektrische Felder zu erwarten ist. Dies könnte eine Wirkung auf wachsende Kompositaggregate zeigen. Da diese Effekte auch aufgrund der elektrischen Felder um die dipolaren Kompositaggregate zu erwarten sind, könnte eine ähnliche Strukturierung der Gelatine in der Nähe der wachsenden Kompositaggregate stattfinden. Insgesamt wurden in dieser Arbeit eine Reihe grundlegender Beiträge zur Erforschung der biomimetisch erzeugten Fluorapatit-Gelatine-Nanokompositaggregate geleistet. Es konnten neue Erkenntnisse zur inneren und äußeren Architektur der Kompositaggregate, zu Mechanismen der Morphogenese und deren wichtigsten Einflussgrößen sowie zum Verständnis der chemisch-physikalischen Vorgänge auf atomarer Größenskala gewonnen werden. Als besonders fruchtbar erwies sich die Verbindung von Experimenten mit theoretischen Untersuchungen, so dass dieser Weg auch in Zukunft grundlegende Erkenntnisse bei der Erforschung der Biomineralisation verspricht und weiterhin verfolgt werden sollte. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften Technische Universität Dresden, Fachrichtung Chemie Prof. Rüdiger Kniep Prof. Dr. Rüdiger Kniep Prof. Dr. Jürgen Brickmann Prof. Dr. Stefan Kaskel Dr. habil. Helmut Cölfen 2009-04-17 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1239970399481-29675 urn:nbn:de:bsz:14-ds-1239970399481-29675 PPN306252988 http://www.qucosa.de/fileadmin/data/qucosa/documents/62/1239970399481-2967.pdf deu