Is short rotation forestry biomass sustainable?

Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and shor...

Full description

Bibliographic Details
Main Author: Zurba, Kamal
Other Authors: Technische Universität Bergakademie Freiberg, Geowissenschaften, Geotechnik und Bergbau
Format: Doctoral Thesis
Language:English
Published: Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola" 2016
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-212162
http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-212162
http://www.qucosa.de/fileadmin/data/qucosa/documents/21216/Zurba_Thesis_2016_1b.pdf
id ndltd-DRESDEN-oai-qucosa.de-bsz-105-qucosa-212162
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Kurzumtriebsplantage
Biomasse
Nachhaltigkeit
Bodenbeatmung
Treibhausgase
Landnutzungsänderung
Ökosystem
Short rotation forestry
biomass
sustainability
soil respiration
greenhouse gases
land use change
ecosystem
ddc:333.7
Plantage
Biomasse
Treibhausgas
Waldökosystem
Landnutzung
Agrarökosystem
Schnellwuchsplantage
Kurzumtrieb
Nutzungsänderung
Aerationszone
Bodenluft
Nachhaltigkeit
spellingShingle Kurzumtriebsplantage
Biomasse
Nachhaltigkeit
Bodenbeatmung
Treibhausgase
Landnutzungsänderung
Ökosystem
Short rotation forestry
biomass
sustainability
soil respiration
greenhouse gases
land use change
ecosystem
ddc:333.7
Plantage
Biomasse
Treibhausgas
Waldökosystem
Landnutzung
Agrarökosystem
Schnellwuchsplantage
Kurzumtrieb
Nutzungsänderung
Aerationszone
Bodenluft
Nachhaltigkeit
Zurba, Kamal
Is short rotation forestry biomass sustainable?
description Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example. In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare. Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF. A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014. Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded. Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available. The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1. The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field. In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle. Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%. Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy.
author2 Technische Universität Bergakademie Freiberg, Geowissenschaften, Geotechnik und Bergbau
author_facet Technische Universität Bergakademie Freiberg, Geowissenschaften, Geotechnik und Bergbau
Zurba, Kamal
author Zurba, Kamal
author_sort Zurba, Kamal
title Is short rotation forestry biomass sustainable?
title_short Is short rotation forestry biomass sustainable?
title_full Is short rotation forestry biomass sustainable?
title_fullStr Is short rotation forestry biomass sustainable?
title_full_unstemmed Is short rotation forestry biomass sustainable?
title_sort is short rotation forestry biomass sustainable?
publisher Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola"
publishDate 2016
url http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-212162
http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-212162
http://www.qucosa.de/fileadmin/data/qucosa/documents/21216/Zurba_Thesis_2016_1b.pdf
work_keys_str_mv AT zurbakamal isshortrotationforestrybiomasssustainable
_version_ 1718390272940834816
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-105-qucosa-2121622016-10-28T03:43:16Z Is short rotation forestry biomass sustainable? Zurba, Kamal Kurzumtriebsplantage Biomasse Nachhaltigkeit Bodenbeatmung Treibhausgase Landnutzungsänderung Ökosystem Short rotation forestry biomass sustainability soil respiration greenhouse gases land use change ecosystem ddc:333.7 Plantage Biomasse Treibhausgas Waldökosystem Landnutzung Agrarökosystem Schnellwuchsplantage Kurzumtrieb Nutzungsänderung Aerationszone Bodenluft Nachhaltigkeit Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example. In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare. Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF. A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014. Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded. Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available. The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1. The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field. In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle. Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%. Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy. Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola" Technische Universität Bergakademie Freiberg, Geowissenschaften, Geotechnik und Bergbau Prof. Dr. rer. nat. habil. Jörg Matschullat Prof. Dr. rer. nat. habil. Jörg Matschullat Prof. Dr. Klaus Butterbach-Bahl Prof. Dr. Hermann Heilmeier 2016-10-27 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-212162 urn:nbn:de:bsz:105-qucosa-212162 http://www.qucosa.de/fileadmin/data/qucosa/documents/21216/Zurba_Thesis_2016_1b.pdf eng