Description
Summary:Im Fokus dieser Diplomarbeit steht ein korreliertes Anderson Modell. Unser Modell beschreibt kurzreichweitige Einzelplatzpotentiale, wobei negative Korrelationen zugelassen werden. Für dieses korrelierte Modell wird mittels der fraktionalen Momentenmethode im Falle genügend großer Unordnung exponentieller Abfall der Greenschen Funktion bewiesen. Anschließend wird daraus für den nicht korrelierten Spezialfall Anderson Lokalisierung bewiesen. === This thesis (diploma) is devoted to a correlated Anderson model. Our model describes short range single site potentials, whereby negative correlations become certified. For this correlated model exponential decay of the Greens' function is proven in the case sufficient large disorder according to the fractional moment method. Subsequently, we prove Anderson localization for the not correlated special case.