A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations

The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, confor...

Full description

Bibliographic Details
Main Authors: Creusé, Emmanuel, Kunert, Gerd, Nicaise, Serge
Language:English
Published: Technische Universität Chemnitz 2003
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
https://monarch.qucosa.de/id/qucosa%3A17956
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-0/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-1/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-2/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-3/
id ndltd-DRESDEN-oai-qucosa-de-qucosa-17956
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa-de-qucosa-179562021-03-30T05:05:48Z A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations urn:nbn:de:bsz:ch1-200300057 1619-7178(Print) 1619-7186(Internet) eng The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements. This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented. Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators. info:eu-repo/classification/ddc/510 ddc:510 Stokes problem anisotropic solution error estimator stretched elements Creusé, Emmanuel Kunert, Gerd Nicaise, Serge Technische Universität Chemnitz 2003-01-16 info:eu-repo/semantics/openAccess doc-type:preprint info:eu-repo/semantics/preprint doc-type:Text https://monarch.qucosa.de/id/qucosa%3A17956 https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-0/ https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-1/ https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-2/ https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-3/
collection NDLTD
language English
sources NDLTD
topic info:eu-repo/classification/ddc/510
ddc:510
Stokes problem
anisotropic solution
error estimator
stretched elements
spellingShingle info:eu-repo/classification/ddc/510
ddc:510
Stokes problem
anisotropic solution
error estimator
stretched elements
Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
description The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements. This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented. Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators.
author Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
author_facet Creusé, Emmanuel
Kunert, Gerd
Nicaise, Serge
author_sort Creusé, Emmanuel
title A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_short A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_full A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_fullStr A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_full_unstemmed A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations
title_sort posteriori error estimation for the stokes problem: anisotropic and isotropic discretizations
publisher Technische Universität Chemnitz
publishDate 2003
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057
https://monarch.qucosa.de/id/qucosa%3A17956
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-0/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-1/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-2/
https://monarch.qucosa.de/api/qucosa%3A17956/attachment/ATT-3/
work_keys_str_mv AT creuseemmanuel aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT kunertgerd aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT nicaiseserge aposteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT creuseemmanuel posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT kunertgerd posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
AT nicaiseserge posteriorierrorestimationforthestokesproblemanisotropicandisotropicdiscretizations
_version_ 1719392595463897088