Sobre el grupo de trenza para RP2

En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas p...

Full description

Bibliographic Details
Main Author: Bravo Quispe, Maribel Rosa
Other Authors: García Armas, Agripino
Language:Spanish
Published: Universidad Nacional Mayor de San Marcos 2014
Subjects:
Online Access:http://cybertesis.unmsm.edu.pe/handle/cybertesis/3416
Description
Summary:En este trabajo presentamos un estudio básico sobre el grupo de trenzas de Artin Bn. Introducimos los espacios de configuración Fn(M) y Fn(M)= n para una variedad M. En el caso M = R2, se mostrará que los grupos fundamentales de los espacios Fn(R2) y Fn(R2)= n son isomorfos a los grupos de trenzas puras Pn y grupo de trenzas de Artin Bn respectivamente. Motivados por este hecho, se define el grupo de trenzas de superficies Pn(M), Bn(M). Por último, concluimos haciendo un estudio a los grupos de trenza del plano proyectivo real Pn(RP2) y Bn(RP2). PALABRAS CLAVES: TRENZA ALGEBRAICA, DIAGRAMAS DE TRENZA, TRENZAS PURAS, ESPACIO DE CONFIGURACIÓN, PLANO PROYECTIVO REAL. === In this work we present a basic study about the group of Artin’s braids, Bn. We introduce the configuration spaces Fn(M) and Fn(M)= n for a manifold M. In the case where M = R2 we will show that the fundamental groups of the spaces Fn(R2) and Fn(R2)= n are isomorphic to the group of pure braids Pn and the group of braids of Artin Bn respectively. Motivated by that fact, we will define groups of braids of surfaces Pn(M) and Bn(M). Lastly, we will do a study of the braid groups of the real projective plane Pn(RP2) and Bn(RP2). KEY WORDS: ALGEBRAIC BRAIDS, BRAIDS DIAGRAMS, PURE BRAIDS, CONFIGURATION SPACES, REAL PROJECTIVE PLANE.