Accuracy of high order density based compressible methods in low mach vortical flows
A new, well posed, two-dimensional two-mode incompressible Kelvin{Helmholtz instability test case has been chosen to explore the ability of a compressible algorithm, Godunov-type scheme with the low Mach number correction, which can be used for simulations involving low Mach numbers, to capture the...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
Cranfield University
2014
|
Online Access: | http://dspace.lib.cranfield.ac.uk/handle/1826/8562 |
id |
ndltd-CRANFIELD1-oai-dspace.lib.cranfield.ac.uk-1826-8562 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CRANFIELD1-oai-dspace.lib.cranfield.ac.uk-1826-85622014-06-24T03:33:36ZAccuracy of high order density based compressible methods in low mach vortical flowsShanmuganathan, SanjeevA new, well posed, two-dimensional two-mode incompressible Kelvin{Helmholtz instability test case has been chosen to explore the ability of a compressible algorithm, Godunov-type scheme with the low Mach number correction, which can be used for simulations involving low Mach numbers, to capture the observed vortex pairing process due to the initial Kelvin{Helmholtz instability growth on low resolution grid. The order of accuracy, 2nd and 5th , of the compressible algorithm is also highlighted. The observed vortex pairing results and the corresponding momentum thickness of the mixing layer against time are compared with results obtained using the same compressible algorithm but without the low Mach number correction and three other methods, a Lagrange remap method where the Lagrange phase is 2nd order accurate in space and time while the remap phase is 3rd order accurate in space and 2nd order accurate in time, a 5th order accurate in space and time nite di erence type method based on the wave propagation algorithm and a 5th order spatial and 3rd order temporal accurate Godunov method utilising the SLAU numerical ux with low Mach capture property. The ability of the compressible ow solver of the commercial software, ANSYS Fluent, in solving low Mach ows is also examined for both implicit and explicit methods provided in the compressible ow solver. In the present two dimensional two mode incompressible Kelvin{Helmholtz instability test case, the ow conditions, stream velocities, length-scales and Reynolds numbers, are taken from an experiment conducted on the observation of vortex pairing process. Three di erent values of low Mach numbers, 0:2, 0:02 and 0:002 have been tested on grid resolutions of 24 24, 32 32, 48 48 and 64 64 on all the di erent numerical approaches. The results obtained show the vortex pairing process can be captured on a low grid resolution with the low Mach number correction applied down to 0:002 with 2nd and 5th order Godunovtype methods. Results also demonstrate clearly that a speci cally designed low Mach correction or ux is required for all algorithms except the Lagrange-remap approach, where dissipation is independent of Mach number. ANSYS Fluent's compressible ow solver with the implicit time stepping method also captures the vortex pairing on low resolutions but excessive dissipation prevents the instability growth when explicit time stepping method is applied.Cranfield UniversityThornber, Ben2014-06-23T13:20:18Z2014-06-23T13:20:18Z2013Thesis or dissertationMastersMSc by Researchhttp://dspace.lib.cranfield.ac.uk/handle/1826/8562en© Cranfield University 2013. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
description |
A new, well posed, two-dimensional two-mode incompressible Kelvin{Helmholtz instability test
case has been chosen to explore the ability of a compressible algorithm, Godunov-type scheme
with the low Mach number correction, which can be used for simulations involving low Mach
numbers, to capture the observed vortex pairing process due to the initial Kelvin{Helmholtz
instability growth on low resolution grid. The order of accuracy, 2nd and 5th , of the compressible
algorithm is also highlighted.
The observed vortex pairing results and the corresponding momentum thickness of the mixing
layer against time are compared with results obtained using the same compressible algorithm but
without the low Mach number correction and three other methods, a Lagrange remap method
where the Lagrange phase is 2nd order accurate in space and time while the remap phase is 3rd
order accurate in space and 2nd order accurate in time, a 5th order accurate in space and time
nite di erence type method based on the wave propagation algorithm and a 5th order spatial
and 3rd order temporal accurate Godunov method utilising the SLAU numerical ux with low
Mach capture property.
The ability of the compressible ow solver of the commercial software, ANSYS Fluent, in solving
low Mach ows is also examined for both implicit and explicit methods provided in the compressible
ow solver.
In the present two dimensional two mode incompressible Kelvin{Helmholtz instability test case,
the ow conditions, stream velocities, length-scales and Reynolds numbers, are taken from an
experiment conducted on the observation of vortex pairing process. Three di erent values of low
Mach numbers, 0:2, 0:02 and 0:002 have been tested on grid resolutions of 24 24, 32 32, 48 48
and 64 64 on all the di erent numerical approaches.
The results obtained show the vortex pairing process can be captured on a low grid resolution
with the low Mach number correction applied down to 0:002 with 2nd and 5th order Godunovtype
methods. Results also demonstrate clearly that a speci cally designed low Mach correction
or ux is required for all algorithms except the Lagrange-remap approach, where dissipation is
independent of Mach number. ANSYS Fluent's compressible ow solver with the implicit time
stepping method also captures the vortex pairing on low resolutions but excessive dissipation
prevents the instability growth when explicit time stepping method is applied. |
author2 |
Thornber, Ben |
author_facet |
Thornber, Ben Shanmuganathan, Sanjeev |
author |
Shanmuganathan, Sanjeev |
spellingShingle |
Shanmuganathan, Sanjeev Accuracy of high order density based compressible methods in low mach vortical flows |
author_sort |
Shanmuganathan, Sanjeev |
title |
Accuracy of high order density based compressible methods in low mach vortical flows |
title_short |
Accuracy of high order density based compressible methods in low mach vortical flows |
title_full |
Accuracy of high order density based compressible methods in low mach vortical flows |
title_fullStr |
Accuracy of high order density based compressible methods in low mach vortical flows |
title_full_unstemmed |
Accuracy of high order density based compressible methods in low mach vortical flows |
title_sort |
accuracy of high order density based compressible methods in low mach vortical flows |
publisher |
Cranfield University |
publishDate |
2014 |
url |
http://dspace.lib.cranfield.ac.uk/handle/1826/8562 |
work_keys_str_mv |
AT shanmuganathansanjeev accuracyofhighorderdensitybasedcompressiblemethodsinlowmachvorticalflows |
_version_ |
1716704612217520128 |