Perceptions of innovations: exploring and developing innovation classification

The capacity to innovate is commonly regarded as a key response mechanism, a critical organisational competence for success, even survival, for organisations operating in turbulent conditions. Understanding how innovation works, therefore, continues to be a significant agenda item for many researche...

Full description

Bibliographic Details
Main Author: Adams, Richard
Other Authors: Tranfield, David
Format: Others
Language:en_UK
Published: Cranfield University 2005
Subjects:
Online Access:http://hdl.handle.net/1826/124
id ndltd-CRANFIELD1-oai-dspace.lib.cranfield.ac.uk-1826-124
record_format oai_dc
collection NDLTD
language en_UK
format Others
sources NDLTD
topic Innovation
Classification in innovation
spellingShingle Innovation
Classification in innovation
Adams, Richard
Perceptions of innovations: exploring and developing innovation classification
description The capacity to innovate is commonly regarded as a key response mechanism, a critical organisational competence for success, even survival, for organisations operating in turbulent conditions. Understanding how innovation works, therefore, continues to be a significant agenda item for many researchers. Innovation, however, is generally recognised to be a complex and multi-dimensional phenomenon. Classificatory approaches have been used to provide conceptual frameworks for descriptive purposes and to help better understand innovation. Further, by the facility of pattern recognition, classificatory approaches also attempt to elevate theorising from the specific and contextual to something more abstract and generalisable. Over the last 50 years researchers have sought to explain variance in innovation activities and processes, adoption and diffusion patterns and, performance outcomes in terms of these different ‘types’ of innovation. Three generic approaches to the classification of innovations can be found in the literature (innovation newness, area of focus and attributes). In this research, several limitations of these approaches are identified: narrow specification, inconsistent application across studies and, indistinct and permeable boundaries between categories. One consequence is that opportunities for cumulative and comparative research are hampered. The assumption underpinning this research is that, given artefact multidimensionality, it is not unreasonable to assume that we might expect to see the diversity of attributes being patterned into distinct configurations. In a mixed-method study, comprising of three empirical phases, the innovation classification problem is addressed through the design, testing and application of a multi-dimensional framework of innovation, predicated on perceived attributes. Phase I is characterised by an iterative process, in which data from four case studies of successful innovation in the UK National Health Service are synthesised with those drawn from an extensive thematic interrogation of the literature, in order to develop the framework. The second phase is concerned with identifying whether or not innovations configure into discrete, identifiable types based on the multidimensional conceptualisation of innovation artefact, construed in terms of innovation attributes. The framework is operationalised in the form of a 56-item survey instrument, administered to a sample consisting of 310 different innovations. 196 returns were analysed using methods developed in biological systematics. From this analysis, a taxonomy consisting of three discrete types (type 1, type 2 and type 3 innovations) emerges. The taxonomy provides the basis for additional theoretical development. In phase III of the research, the utility of the taxonomy is explored in a qualitative investigation of the processes underpinning the development of exemplar cases of each of the three innovation types. This research presents an integrative approach to the study of innovation based on the attributes of the innovation itself, rather than its effects. Where the challenge is to manage multiple discrete data combinations along a number of dimensions, the configurational approach is especially relevant and can provide a richer understanding and description of the phenomenon of interest. Whilst none of the dimensions that comprise the proposed framework are new in themselves, what is original is the attempt to deal with them simultaneously in order that innovations may be classified according to differences in the way in which their attributes configure. This more sensitive classification of the artefact permits a clearer exploration of relationship issues between the innovation, its processes and outcomes.
author2 Tranfield, David
author_facet Tranfield, David
Adams, Richard
author Adams, Richard
author_sort Adams, Richard
title Perceptions of innovations: exploring and developing innovation classification
title_short Perceptions of innovations: exploring and developing innovation classification
title_full Perceptions of innovations: exploring and developing innovation classification
title_fullStr Perceptions of innovations: exploring and developing innovation classification
title_full_unstemmed Perceptions of innovations: exploring and developing innovation classification
title_sort perceptions of innovations: exploring and developing innovation classification
publisher Cranfield University
publishDate 2005
url http://hdl.handle.net/1826/124
work_keys_str_mv AT adamsrichard perceptionsofinnovationsexploringanddevelopinginnovationclassification
_version_ 1716581309422239744
spelling ndltd-CRANFIELD1-oai-dspace.lib.cranfield.ac.uk-1826-1242013-04-19T15:20:46ZPerceptions of innovations: exploring and developing innovation classificationAdams, RichardInnovationClassification in innovationThe capacity to innovate is commonly regarded as a key response mechanism, a critical organisational competence for success, even survival, for organisations operating in turbulent conditions. Understanding how innovation works, therefore, continues to be a significant agenda item for many researchers. Innovation, however, is generally recognised to be a complex and multi-dimensional phenomenon. Classificatory approaches have been used to provide conceptual frameworks for descriptive purposes and to help better understand innovation. Further, by the facility of pattern recognition, classificatory approaches also attempt to elevate theorising from the specific and contextual to something more abstract and generalisable. Over the last 50 years researchers have sought to explain variance in innovation activities and processes, adoption and diffusion patterns and, performance outcomes in terms of these different ‘types’ of innovation. Three generic approaches to the classification of innovations can be found in the literature (innovation newness, area of focus and attributes). In this research, several limitations of these approaches are identified: narrow specification, inconsistent application across studies and, indistinct and permeable boundaries between categories. One consequence is that opportunities for cumulative and comparative research are hampered. The assumption underpinning this research is that, given artefact multidimensionality, it is not unreasonable to assume that we might expect to see the diversity of attributes being patterned into distinct configurations. In a mixed-method study, comprising of three empirical phases, the innovation classification problem is addressed through the design, testing and application of a multi-dimensional framework of innovation, predicated on perceived attributes. Phase I is characterised by an iterative process, in which data from four case studies of successful innovation in the UK National Health Service are synthesised with those drawn from an extensive thematic interrogation of the literature, in order to develop the framework. The second phase is concerned with identifying whether or not innovations configure into discrete, identifiable types based on the multidimensional conceptualisation of innovation artefact, construed in terms of innovation attributes. The framework is operationalised in the form of a 56-item survey instrument, administered to a sample consisting of 310 different innovations. 196 returns were analysed using methods developed in biological systematics. From this analysis, a taxonomy consisting of three discrete types (type 1, type 2 and type 3 innovations) emerges. The taxonomy provides the basis for additional theoretical development. In phase III of the research, the utility of the taxonomy is explored in a qualitative investigation of the processes underpinning the development of exemplar cases of each of the three innovation types. This research presents an integrative approach to the study of innovation based on the attributes of the innovation itself, rather than its effects. Where the challenge is to manage multiple discrete data combinations along a number of dimensions, the configurational approach is especially relevant and can provide a richer understanding and description of the phenomenon of interest. Whilst none of the dimensions that comprise the proposed framework are new in themselves, what is original is the attempt to deal with them simultaneously in order that innovations may be classified according to differences in the way in which their attributes configure. This more sensitive classification of the artefact permits a clearer exploration of relationship issues between the innovation, its processes and outcomes.Cranfield UniversitySchool of ManagementTranfield, DavidDenyer, David2005-11-23T11:34:17Z2005-11-23T11:34:17Z2003-09Thesis or dissertationDoctoralPhD1883 bytes1790948 bytestext/plainapplication/pdfhttp://hdl.handle.net/1826/124en_UK