以Noncausal Cauchy AR(1) with Gaussian Component分析台灣股價指數
過去實證研究多以時間序列模型搭配 GARCH 模型針對台灣股價指數進行分析。然而,Gourieroux and Zakoian(2017) 提出,當一時間序列具有泡沫現象時,noncausal Cauchy AR(1) process 是可能的優選模型。此外,Sarno and Taylor(1999) 的研究認為,台灣股價指數具有泡沫現象,故我們以 noncausal Cauchy AR(1) with Gaussian component 分析台灣股價指數,進而判斷其泡沫效果係來自 noncausal linear process 之 local explosive,並根據 noncaus...
Main Author: | 温元駿 |
---|---|
Language: | 中文 |
Published: |
國立政治大學
|
Subjects: | |
Online Access: | http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G1042580031%22. |
Similar Items
-
隱含波動率指數的分析及預測 - Mixed Causal-Noncausal Model 的應用
by: 王姸之 -
Noncausality of numerical models of dynamic fracture growth
by: L. Knopoff
Published: (1997-06-01) -
Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?
by: Alain Hecq, et al.
Published: (2017-10-01) -
Capacity region of the 3 receiver state dependent multilevel BC with noncausal state information
by: Viswanathan Ramachandran
Published: (2017-09-01) -
A New Feedback Scheme for the State-Dependent Wiretap Channel With Noncausal State at the Transmitter
by: Haonan Zhang, et al.
Published: (2019-01-01)