探討AVM與顧客關係管理結合-巨量資料分析

作業價值管理系統(Activity Value Management , AVM)是以作業基礎成本 制為核心,並與價值管理系統作整合,發展出企業進行管理決策時所需之資訊, 藉此提升企業的決策精準度與品質,而在管理會計領域,鮮少有文獻針對作業價 值管理系統與顧客關係管理的實務結合作說明,再加上目前大數據管理之趨勢, 顯示出以資訊導向作管理決策之重要性,因此,本研究進行個案研究,為作業價 值管理系統(Activity Value Management , AVM)與顧客關係管理的結合-以巨 量資料分析所遇到之問題,提出解決方案,且針對未來巨量資料管理能力提出建 議走向,而本研究結論簡述如下: 一、...

Full description

Bibliographic Details
Main Authors: 林宜靜, Lin, Yi-Ching
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G1033530421%22.
id ndltd-CHENGCHI-G1033530421
record_format oai_dc
spelling ndltd-CHENGCHI-G10335304212017-07-04T03:30:06Z 探討AVM與顧客關係管理結合-巨量資料分析 The integration of activity value management and customer relationship management-big data analysis 林宜靜 Lin, Yi-Ching 作業價值管理系統 顧客關係管理 巨量資料 Activity value management Customer relationship management Big data 作業價值管理系統(Activity Value Management , AVM)是以作業基礎成本 制為核心,並與價值管理系統作整合,發展出企業進行管理決策時所需之資訊, 藉此提升企業的決策精準度與品質,而在管理會計領域,鮮少有文獻針對作業價 值管理系統與顧客關係管理的實務結合作說明,再加上目前大數據管理之趨勢, 顯示出以資訊導向作管理決策之重要性,因此,本研究進行個案研究,為作業價 值管理系統(Activity Value Management , AVM)與顧客關係管理的結合-以巨 量資料分析所遇到之問題,提出解決方案,且針對未來巨量資料管理能力提出建 議走向,而本研究結論簡述如下: 一、 運用 AVM 所產出之作業成本資訊,將之區分為顧客服務四大屬性,並經 由開發、處理訂單、售後服務以及行政等四項屬性,評估個案公司的作業流 程是否有成本高耗的情形,並提出改善計畫,再造個案公司之顧客服務管理 流程。 二、 以 AVM 所產出之客戶損益資訊,進行個案公司的顧客區隔政策,將外 部資料納入,兼以內部資料,找出虧損的客戶問題根源與解決之道,並強化 個案公司針對表現優良之客戶,設立員工表揚之制度,並提出進一步優化顧 客關係經營的方案,使顧客關係管理的品質提升。 三、 個案公司的通路別種類繁多,因此,為補足顧客關係管理中其通路管理 的不足,本研究建議以 AVM 產出之資訊,設計通路別客戶損益的表單,使管 理者以通路別分類進行顧客經營時,能一目了然,增加管理效率,強化 AVM 與顧客關係管理之密合程度 四、 AVM 所提供的內部資訊繁多,且能有效整合各部門的資訊,以「作業」 為細胞,使各部門間的溝通語言一致化,因此,為推行良好的巨量資料顧客 關係管理,則需從 AVM 所產出的歷史資訊分析為基礎,評估個案公司所需的 外部資料,並為未來巨量資料顧客關係管理模型之建置奠基 Activity Value Management, which is the integration of the activity-based costing and value management, provides the information which the companies need when making business policy or strategy and improves the quality and the accuracy of decision making. In the field of management accounting, few papers discuss the integration of the activity value management and customer relationship management as well as its cases in practice. Also, big data becomes a trend and shows the importance of the data-driven decision management. Therefore, the thesis is a case study which focuses on the integration of the integration of the activity value management and customer relationship management, analyzes the problem of big data and provides the possible solutions. Besides, based on the case study, the thesis also suggests the better policy concerning big data management. And there are four main points below: 1. Through using the activity-based costing information yielded by AVM, one Taiwanese food manufacturer, the case study of the thesis, can divide their customer services costs into four attributes, which are R&D, processing order, post-sale service and administration and evaluate the cost efficiency of their procedures by these four attributes so it can revise or renew their procedures accordingly. 2. Through using the customer profitability yielded by AVM, the company can conduct their own customer segmentation, collect the related external data to find the real reason why customers bring more money or less and provide better solutions to solve the problem and strengthen the relationship with good customers. 3. Because of a variety of the channels, the thesis suggests that the company should take advantage of the information from AVM and design the customer profit form to help analyze the customers from different channels and gain the management efficiency. 4. AVM provides lots of information, use “activity” as a cell to connect different departments and integrate all information from them. Therefore, based on the historical information yielded by AVM, the company can source the connected external data, analyze the relationship between customer and the information and will develop the big data customer profitability model in the future. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G1033530421%22. text 中文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 中文
sources NDLTD
topic 作業價值管理系統
顧客關係管理
巨量資料
Activity value management
Customer relationship management
Big data
spellingShingle 作業價值管理系統
顧客關係管理
巨量資料
Activity value management
Customer relationship management
Big data
林宜靜
Lin, Yi-Ching
探討AVM與顧客關係管理結合-巨量資料分析
description 作業價值管理系統(Activity Value Management , AVM)是以作業基礎成本 制為核心,並與價值管理系統作整合,發展出企業進行管理決策時所需之資訊, 藉此提升企業的決策精準度與品質,而在管理會計領域,鮮少有文獻針對作業價 值管理系統與顧客關係管理的實務結合作說明,再加上目前大數據管理之趨勢, 顯示出以資訊導向作管理決策之重要性,因此,本研究進行個案研究,為作業價 值管理系統(Activity Value Management , AVM)與顧客關係管理的結合-以巨 量資料分析所遇到之問題,提出解決方案,且針對未來巨量資料管理能力提出建 議走向,而本研究結論簡述如下: 一、 運用 AVM 所產出之作業成本資訊,將之區分為顧客服務四大屬性,並經 由開發、處理訂單、售後服務以及行政等四項屬性,評估個案公司的作業流 程是否有成本高耗的情形,並提出改善計畫,再造個案公司之顧客服務管理 流程。 二、 以 AVM 所產出之客戶損益資訊,進行個案公司的顧客區隔政策,將外 部資料納入,兼以內部資料,找出虧損的客戶問題根源與解決之道,並強化 個案公司針對表現優良之客戶,設立員工表揚之制度,並提出進一步優化顧 客關係經營的方案,使顧客關係管理的品質提升。 三、 個案公司的通路別種類繁多,因此,為補足顧客關係管理中其通路管理 的不足,本研究建議以 AVM 產出之資訊,設計通路別客戶損益的表單,使管 理者以通路別分類進行顧客經營時,能一目了然,增加管理效率,強化 AVM 與顧客關係管理之密合程度 四、 AVM 所提供的內部資訊繁多,且能有效整合各部門的資訊,以「作業」 為細胞,使各部門間的溝通語言一致化,因此,為推行良好的巨量資料顧客 關係管理,則需從 AVM 所產出的歷史資訊分析為基礎,評估個案公司所需的 外部資料,並為未來巨量資料顧客關係管理模型之建置奠基 === Activity Value Management, which is the integration of the activity-based costing and value management, provides the information which the companies need when making business policy or strategy and improves the quality and the accuracy of decision making. In the field of management accounting, few papers discuss the integration of the activity value management and customer relationship management as well as its cases in practice. Also, big data becomes a trend and shows the importance of the data-driven decision management. Therefore, the thesis is a case study which focuses on the integration of the integration of the activity value management and customer relationship management, analyzes the problem of big data and provides the possible solutions. Besides, based on the case study, the thesis also suggests the better policy concerning big data management. And there are four main points below: 1. Through using the activity-based costing information yielded by AVM, one Taiwanese food manufacturer, the case study of the thesis, can divide their customer services costs into four attributes, which are R&D, processing order, post-sale service and administration and evaluate the cost efficiency of their procedures by these four attributes so it can revise or renew their procedures accordingly. 2. Through using the customer profitability yielded by AVM, the company can conduct their own customer segmentation, collect the related external data to find the real reason why customers bring more money or less and provide better solutions to solve the problem and strengthen the relationship with good customers. 3. Because of a variety of the channels, the thesis suggests that the company should take advantage of the information from AVM and design the customer profit form to help analyze the customers from different channels and gain the management efficiency. 4. AVM provides lots of information, use “activity” as a cell to connect different departments and integrate all information from them. Therefore, based on the historical information yielded by AVM, the company can source the connected external data, analyze the relationship between customer and the information and will develop the big data customer profitability model in the future.
author 林宜靜
Lin, Yi-Ching
author_facet 林宜靜
Lin, Yi-Ching
author_sort 林宜靜
title 探討AVM與顧客關係管理結合-巨量資料分析
title_short 探討AVM與顧客關係管理結合-巨量資料分析
title_full 探討AVM與顧客關係管理結合-巨量資料分析
title_fullStr 探討AVM與顧客關係管理結合-巨量資料分析
title_full_unstemmed 探討AVM與顧客關係管理結合-巨量資料分析
title_sort 探討avm與顧客關係管理結合-巨量資料分析
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G1033530421%22.
work_keys_str_mv AT línyíjìng tàntǎoavmyǔgùkèguānxìguǎnlǐjiéhéjùliàngzīliàofēnxī
AT linyiching tàntǎoavmyǔgùkèguānxìguǎnlǐjiéhéjùliàngzīliàofēnxī
AT línyíjìng theintegrationofactivityvaluemanagementandcustomerrelationshipmanagementbigdataanalysis
AT linyiching theintegrationofactivityvaluemanagementandcustomerrelationshipmanagementbigdataanalysis
_version_ 1718489205669101568