結合中文斷詞系統與雙分群演算法於音樂相關臉書粉絲團之分析:以KKBOX為例

近年智慧型手機與網路的普及,使得社群網站與線上串流音樂蓬勃發展。臉書(Facebook)用戶截至去年止每月總體平均用戶高達18.6億人 ,粉絲專頁成為公司企業特別關注的行銷手段。粉絲專頁上的貼文能夠在短時間內經過點閱、分享傳播至用戶的頁面,達到比起電視廣告更佳的效果,也節省了許多的成本。本研究提供了一套針對臉書粉絲專頁貼文的分群流程,考量到貼文字詞的複雜性,除了抓取了臉書粉絲專頁的貼文外,也抓取了與其相關的KKBOX網頁資訊,整合KKBOX網頁中的資料,對中文斷詞系統(Jieba)的語料庫進行擴充,以提高斷詞的正確性,接著透過雙分群演算法(Minimum Squared Residue Co-...

Full description

Bibliographic Details
Main Authors: 陳柏羽, Chen, Po Yu
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0102753012%22.