Summary: | 本文改良了Shafiee-Topal(2010)所提出之跳躍模型之波動率,並歸納成三種模型:改良跳躍模型、改良平滑跳躍模型以及最佳化跳躍模型,並運用時間序列模型探討樣本期間內黃金價格。第一部份比較三種跳躍模型與Shafiee-Topal模型在訓練集及測試集的預測結果,並預測2012年至2018年之黃金價格走勢。第二部份探討黃金價格、原油價格以及美元加權指數之間的互動關係,建立多變數模型以預測黃金價格之長期趨勢。
首先,本文檢驗黃金價格、原油價格及美元加權指數樣本之恆定性,經由ADF 單根檢定法發現序列具有單根,進而使用TSP(Trend Stationary Process)估計模型參數。其次,黃金價格、原油價格及美元加權指數經共整合檢定發現,各模型變數間均具有共整合關係,即變數間具有長期均衡關係。黃金價格與原油價格呈正向反應,而黃金價格和原油價格與美元加權指數呈負向反應,除了受自身的預測解釋能力外,亦可以做為觀察其他變數的未來走勢方向及影響大小預估。最後,探討黃金價格受波動率的影響情形,本文改良Shafiee-Topal模型之波動率,並比較四種模型對黃金價格趨勢預測之結果,發現改良平滑跳躍模型在實際黃金價格波動率大時,其趨勢預測結果會優於Shafiee-Topal模型。
=== This research advanced the volatility component (λ) of the jump and dip model (Shafiee and Topal,2010) on gold prices from 1968 to 2012 and estimated the gold price for the next 6 years. Based on the trend stationary process, we defined the three components and derived three new models: Adjusted Jump and Dip Model, Adjusted Smooth Jump and Dip Model and Optimized Jump and Dip Model.
First part of the thesis compared the performance in prediction of the training data and the testing data for three different models and the jump and dip model. Second part of the thesis investigated the relationship among the gold price, crude oil price, and trade weighted U.S. dollar index of the concepts The result illustrated the long term trend of gold price described by a multivariate predictive model. We found evidence that different levels of volatility affect the prediction of gold price, and the adjusted jump and dip Model performs best when the true volatility is relatively high.
|