大資料多元尺度在網路使用者偏好分析之應用

由於現在網路發展的非常快速,資料的產生速度以及使用方式已經超過人們的分析能力與解讀能力,因此近來大資料計算是一個很重要的研究課題,許多科學家與研究單位都積極地投入大量的研究資源,目的就是要研究這些龐大的資料要如何去分析,或是解讀。特別是大型網站上的資料,使用者的數量和可點選的項目是隨著時間不斷增加,如何分析這類的資料是一個重要的課題。 我們將介紹如何利用Python程式的特性對大型網站進行使用者偏好分析,透過亂數投影和分解-合成多元尺度法的合作,做到使用者偏好網路的建制,協助大型網站對使用者進行即時性的閱讀項目推薦。我們提出Data is cache for dimension reduct...

Full description

Bibliographic Details
Main Author: 潘靜儒
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0098751012%22.
Description
Summary:由於現在網路發展的非常快速,資料的產生速度以及使用方式已經超過人們的分析能力與解讀能力,因此近來大資料計算是一個很重要的研究課題,許多科學家與研究單位都積極地投入大量的研究資源,目的就是要研究這些龐大的資料要如何去分析,或是解讀。特別是大型網站上的資料,使用者的數量和可點選的項目是隨著時間不斷增加,如何分析這類的資料是一個重要的課題。 我們將介紹如何利用Python程式的特性對大型網站進行使用者偏好分析,透過亂數投影和分解-合成多元尺度法的合作,做到使用者偏好網路的建制,協助大型網站對使用者進行即時性的閱讀項目推薦。我們提出Data is cache for dimension reduction 的概念,說明大資料計算必須配合資料庫才能達到真正的快速計算結果。