台股風險值分析

利用獨立成份分析的功能,解決求解投組分配的困難,再用LAVE,GARCH,跟RiskMetrics 三種不同的變異數方法去配適獨立成份的動態過程,並利用台股指數進行一天的風險值預期,共一千天,最後用回顧測試檢定模型的優劣 === The Value at Risk (VaR) measures the potential loss in value of risky asset or portfolio over a defined period for a given confidence interval. The traditional way needs to estimate cor...

Full description

Bibliographic Details
Main Author: 曾順延
Language:英文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0097351025%22.
id ndltd-CHENGCHI-G0097351025
record_format oai_dc
spelling ndltd-CHENGCHI-G00973510252013-01-07T19:35:10Z 台股風險值分析 Value at risk based on independent component analysis 曾順延 風險值 獨立成份分析 利用獨立成份分析的功能,解決求解投組分配的困難,再用LAVE,GARCH,跟RiskMetrics 三種不同的變異數方法去配適獨立成份的動態過程,並利用台股指數進行一天的風險值預期,共一千天,最後用回顧測試檢定模型的優劣 The Value at Risk (VaR) measures the potential loss in value of risky asset or portfolio over a defined period for a given confidence interval. The traditional way needs to estimate corresponding distribution and process of portfolio, which is very difficult. Independent component analysis (ICA) is designed for detection of blind folded signals and retrieves out of a high-dimensional time series stochastically independent source components. We can use the property of independence to estimate distribution of portfolio easily. This paper uses three different volatility estimate methods in conjunction with independent component process to calculate value at risk. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0097351025%22. text 英文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 英文
sources NDLTD
topic 風險值
獨立成份分析
spellingShingle 風險值
獨立成份分析
曾順延
台股風險值分析
description 利用獨立成份分析的功能,解決求解投組分配的困難,再用LAVE,GARCH,跟RiskMetrics 三種不同的變異數方法去配適獨立成份的動態過程,並利用台股指數進行一天的風險值預期,共一千天,最後用回顧測試檢定模型的優劣 === The Value at Risk (VaR) measures the potential loss in value of risky asset or portfolio over a defined period for a given confidence interval. The traditional way needs to estimate corresponding distribution and process of portfolio, which is very difficult. Independent component analysis (ICA) is designed for detection of blind folded signals and retrieves out of a high-dimensional time series stochastically independent source components. We can use the property of independence to estimate distribution of portfolio easily. This paper uses three different volatility estimate methods in conjunction with independent component process to calculate value at risk.
author 曾順延
author_facet 曾順延
author_sort 曾順延
title 台股風險值分析
title_short 台股風險值分析
title_full 台股風險值分析
title_fullStr 台股風險值分析
title_full_unstemmed 台股風險值分析
title_sort 台股風險值分析
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0097351025%22.
work_keys_str_mv AT céngshùnyán táigǔfēngxiǎnzhífēnxī
AT céngshùnyán valueatriskbasedonindependentcomponentanalysis
_version_ 1716467106380251136