二維平滑熱帶環面法諾曲體之研究

這篇論文裡,我們研究熱帶環面曲體,尤其是熱帶環面法諾曲體。如同古典代數幾何裡的情況一樣,要建構熱帶環面曲體,我們先從扇型開始建構。然而在某些結構裡沒辦法有熱帶化的對應,因此我們需要選一個適當的定義,這個定義必需可看成是古典情況類推而來的。在我們的論文中,使用我們認為合適的定義,計算所有平滑二維熱帶環面法諾曲體的情況,結果也證實非常類似古典的情形。 === In this thesis, we survey and study tropical toric varieties with focus on tropical toric Fano varieties. To construct tr...

Full description

Bibliographic Details
Main Authors: 陳振偉, Chen, Chen Wei
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0096751007%22.
id ndltd-CHENGCHI-G0096751007
record_format oai_dc
spelling ndltd-CHENGCHI-G00967510072013-01-07T19:37:59Z 二維平滑熱帶環面法諾曲體之研究 On Two-Dimensional Smooth Tropical Toric Fano Varieties 陳振偉 Chen, Chen Wei 熱帶環面法諾曲體 Tropical Toric Fano Varieties 這篇論文裡,我們研究熱帶環面曲體,尤其是熱帶環面法諾曲體。如同古典代數幾何裡的情況一樣,要建構熱帶環面曲體,我們先從扇型開始建構。然而在某些結構裡沒辦法有熱帶化的對應,因此我們需要選一個適當的定義,這個定義必需可看成是古典情況類推而來的。在我們的論文中,使用我們認為合適的定義,計算所有平滑二維熱帶環面法諾曲體的情況,結果也證實非常類似古典的情形。 In this thesis, we survey and study tropical toric varieties with focus on tropical toric Fano varieties. To construct tropical toric varieties, we start with fans, just like the situation in classical algebraic geometry. However, some constructions does not make sense in tropical settings. Therefore, we need to choose a reasonable definition which give an analogue of a classical toric variety. In the end of this paper, we use the definition we choose, and explicitly calculate all smooth two-dimensional tropical toric Fano varieties which we found are very similar to classical cases. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0096751007%22. text 中文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 中文
sources NDLTD
topic 熱帶環面法諾曲體
Tropical Toric Fano Varieties
spellingShingle 熱帶環面法諾曲體
Tropical Toric Fano Varieties
陳振偉
Chen, Chen Wei
二維平滑熱帶環面法諾曲體之研究
description 這篇論文裡,我們研究熱帶環面曲體,尤其是熱帶環面法諾曲體。如同古典代數幾何裡的情況一樣,要建構熱帶環面曲體,我們先從扇型開始建構。然而在某些結構裡沒辦法有熱帶化的對應,因此我們需要選一個適當的定義,這個定義必需可看成是古典情況類推而來的。在我們的論文中,使用我們認為合適的定義,計算所有平滑二維熱帶環面法諾曲體的情況,結果也證實非常類似古典的情形。 === In this thesis, we survey and study tropical toric varieties with focus on tropical toric Fano varieties. To construct tropical toric varieties, we start with fans, just like the situation in classical algebraic geometry. However, some constructions does not make sense in tropical settings. Therefore, we need to choose a reasonable definition which give an analogue of a classical toric variety. In the end of this paper, we use the definition we choose, and explicitly calculate all smooth two-dimensional tropical toric Fano varieties which we found are very similar to classical cases.
author 陳振偉
Chen, Chen Wei
author_facet 陳振偉
Chen, Chen Wei
author_sort 陳振偉
title 二維平滑熱帶環面法諾曲體之研究
title_short 二維平滑熱帶環面法諾曲體之研究
title_full 二維平滑熱帶環面法諾曲體之研究
title_fullStr 二維平滑熱帶環面法諾曲體之研究
title_full_unstemmed 二維平滑熱帶環面法諾曲體之研究
title_sort 二維平滑熱帶環面法諾曲體之研究
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0096751007%22.
work_keys_str_mv AT chénzhènwěi èrwéipínghuárèdàihuánmiànfǎnuòqūtǐzhīyánjiū
AT chenchenwei èrwéipínghuárèdàihuánmiànfǎnuòqūtǐzhīyánjiū
AT chénzhènwěi ontwodimensionalsmoothtropicaltoricfanovarieties
AT chenchenwei ontwodimensionalsmoothtropicaltoricfanovarieties
_version_ 1716469064865415168