可贖回雪球式商品的評價與避險
本文採用Lognormal Forward LIBOR Model (LFM) 利率模型,針對可贖回雪球式債券進行相關的評價與避險分析,而由於此商品的計息方式為路徑相依型態,價格沒有封閉解,故必須利用數值方法來進行評價。過去通常使用二元樹或三元樹的方法來評價具有可贖回特性的商品,但因為LFM是屬於多因子模型,所以不容易處理建樹的過程。而一般路徑相依商品的評價是使用蒙地卡羅法來進行,但是標準的蒙地卡羅法不易處理美式或百慕達式選擇權的問題,因此,本研究將使用由Longstaff and Schwartz(2001)所提出的最小平方蒙地卡羅法,來處理同時具有可贖回與路徑相依特性的商品評價並進行...
Main Author: | |
---|---|
Language: | 中文 |
Published: |
國立政治大學
|
Subjects: | |
Online Access: | http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0093352009%22. |
id |
ndltd-CHENGCHI-G0093352009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CHENGCHI-G00933520092013-01-07T19:30:30Z 可贖回雪球式商品的評價與避險 曹若玹 利率連動債券 最小平方蒙地卡羅 參數校準 提前贖回 避險參數 BGM LFM LIBOR Greeks calibration snowball Sausage Monte Carlo pathwise 本文採用Lognormal Forward LIBOR Model (LFM) 利率模型,針對可贖回雪球式債券進行相關的評價與避險分析,而由於此商品的計息方式為路徑相依型態,價格沒有封閉解,故必須利用數值方法來進行評價。過去通常使用二元樹或三元樹的方法來評價具有可贖回特性的商品,但因為LFM是屬於多因子模型,所以不容易處理建樹的過程。而一般路徑相依商品的評價是使用蒙地卡羅法來進行,但是標準的蒙地卡羅法不易處理美式或百慕達式選擇權的問題,因此,本研究將使用由Longstaff and Schwartz(2001)所提出的最小平方蒙地卡羅法,來處理同時具有可贖回與路徑相依特性的商品評價並進行實證研究。 此外,關於可贖回商品的避險參數部分,由於商品的價格函數不具有連續性,若在蒙地卡羅法之下直接使用重新模擬的方式來求算避險參數,將會造成不準確的結果,而Piterbarg (2004)提出了兩種可用來計算在LFM下可贖回商品避險參數的方法,其實証結果發現所求出的避險參數結果較準確,因此本研究將此方法運用至可贖回雪球式利率連動債券,並分析各種參數變化對商品價格的影響大小,便於進行避險工作。 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0093352009%22. text 中文 Copyright © nccu library on behalf of the copyright holders |
collection |
NDLTD |
language |
中文 |
sources |
NDLTD |
topic |
利率連動債券 最小平方蒙地卡羅 參數校準 提前贖回 避險參數 BGM LFM LIBOR Greeks calibration snowball Sausage Monte Carlo pathwise |
spellingShingle |
利率連動債券 最小平方蒙地卡羅 參數校準 提前贖回 避險參數 BGM LFM LIBOR Greeks calibration snowball Sausage Monte Carlo pathwise 曹若玹 可贖回雪球式商品的評價與避險 |
description |
本文採用Lognormal Forward LIBOR Model (LFM) 利率模型,針對可贖回雪球式債券進行相關的評價與避險分析,而由於此商品的計息方式為路徑相依型態,價格沒有封閉解,故必須利用數值方法來進行評價。過去通常使用二元樹或三元樹的方法來評價具有可贖回特性的商品,但因為LFM是屬於多因子模型,所以不容易處理建樹的過程。而一般路徑相依商品的評價是使用蒙地卡羅法來進行,但是標準的蒙地卡羅法不易處理美式或百慕達式選擇權的問題,因此,本研究將使用由Longstaff and Schwartz(2001)所提出的最小平方蒙地卡羅法,來處理同時具有可贖回與路徑相依特性的商品評價並進行實證研究。
=== 此外,關於可贖回商品的避險參數部分,由於商品的價格函數不具有連續性,若在蒙地卡羅法之下直接使用重新模擬的方式來求算避險參數,將會造成不準確的結果,而Piterbarg (2004)提出了兩種可用來計算在LFM下可贖回商品避險參數的方法,其實証結果發現所求出的避險參數結果較準確,因此本研究將此方法運用至可贖回雪球式利率連動債券,並分析各種參數變化對商品價格的影響大小,便於進行避險工作。 |
author |
曹若玹 |
author_facet |
曹若玹 |
author_sort |
曹若玹 |
title |
可贖回雪球式商品的評價與避險 |
title_short |
可贖回雪球式商品的評價與避險 |
title_full |
可贖回雪球式商品的評價與避險 |
title_fullStr |
可贖回雪球式商品的評價與避險 |
title_full_unstemmed |
可贖回雪球式商品的評價與避險 |
title_sort |
可贖回雪球式商品的評價與避險 |
publisher |
國立政治大學 |
url |
http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0093352009%22. |
work_keys_str_mv |
AT cáoruòxuán kěshúhuíxuěqiúshìshāngpǐndepíngjiàyǔbìxiǎn |
_version_ |
1716463910768345088 |