Robust Diagnostics for the Logistic Regression Model With Incomplete Data

Atkinson 及 Riani 應用前進搜尋演算法來處理百牡利資料中所包含的多重離群值(2001)。在這篇論文中,我們沿用相同的想法來處理在不完整資料下一般線性模型中的多重離群值。這個演算法藉由先填補資料中遺漏的部分,再利用前進搜尋演算法來確認資料中的離群值。我們所提出的方法可以解決處理多重離群值時常會遇到的遮蓋效應。我們應用了一些真實資料來說明這個演算法並得到令人滿意結果。 === Atkinson and Riani (2001) apply the forward search algorithm to deal with the problem of the detection of...

Full description

Bibliographic Details
Main Author: 范少華
Language:英文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0090354008%22.
id ndltd-CHENGCHI-G0090354008
record_format oai_dc
spelling ndltd-CHENGCHI-G00903540082013-01-07T19:27:23Z Robust Diagnostics for the Logistic Regression Model With Incomplete Data 范少華 EM algorithm Incomplete data generalized linear model high breakdown ppint robust methods Atkinson 及 Riani 應用前進搜尋演算法來處理百牡利資料中所包含的多重離群值(2001)。在這篇論文中,我們沿用相同的想法來處理在不完整資料下一般線性模型中的多重離群值。這個演算法藉由先填補資料中遺漏的部分,再利用前進搜尋演算法來確認資料中的離群值。我們所提出的方法可以解決處理多重離群值時常會遇到的遮蓋效應。我們應用了一些真實資料來說明這個演算法並得到令人滿意結果。 Atkinson and Riani (2001) apply the forward search algorithm to deal with the problem of the detection of multiple outliers in binomial data. In this thesis, we extend the similar idea to identify multiple outliers for the generalized linear models when part of data are missing. The algorithm starts with imputation method to fill-in the missing observations in the data, and then use the forward search algorithm to confirm outliers. The proposed method can overcome the masking effect, which commonly occurs when multiple outliers exit in the data. Real data are used to illustrate the procedure, and satisfactory results are obtained. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0090354008%22. text 英文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 英文
sources NDLTD
topic EM algorithm
Incomplete data
generalized linear model
high breakdown ppint
robust methods
spellingShingle EM algorithm
Incomplete data
generalized linear model
high breakdown ppint
robust methods
范少華
Robust Diagnostics for the Logistic Regression Model With Incomplete Data
description Atkinson 及 Riani 應用前進搜尋演算法來處理百牡利資料中所包含的多重離群值(2001)。在這篇論文中,我們沿用相同的想法來處理在不完整資料下一般線性模型中的多重離群值。這個演算法藉由先填補資料中遺漏的部分,再利用前進搜尋演算法來確認資料中的離群值。我們所提出的方法可以解決處理多重離群值時常會遇到的遮蓋效應。我們應用了一些真實資料來說明這個演算法並得到令人滿意結果。 === Atkinson and Riani (2001) apply the forward search algorithm to deal with the problem of the detection of multiple outliers in binomial data. In this thesis, we extend the similar idea to identify multiple outliers for the generalized linear models when part of data are missing. The algorithm starts with imputation method to fill-in the missing observations in the data, and then use the forward search algorithm to confirm outliers. The proposed method can overcome the masking effect, which commonly occurs when multiple outliers exit in the data. Real data are used to illustrate the procedure, and satisfactory results are obtained.
author 范少華
author_facet 范少華
author_sort 范少華
title Robust Diagnostics for the Logistic Regression Model With Incomplete Data
title_short Robust Diagnostics for the Logistic Regression Model With Incomplete Data
title_full Robust Diagnostics for the Logistic Regression Model With Incomplete Data
title_fullStr Robust Diagnostics for the Logistic Regression Model With Incomplete Data
title_full_unstemmed Robust Diagnostics for the Logistic Regression Model With Incomplete Data
title_sort robust diagnostics for the logistic regression model with incomplete data
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0090354008%22.
work_keys_str_mv AT fànshǎohuá robustdiagnosticsforthelogisticregressionmodelwithincompletedata
_version_ 1716462374849871872