Combinatorial Argument of Partition with Point, Line, and Space

在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。 === In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Eu...

Full description

Bibliographic Details
Main Authors: 王佑欣, Yuhsin Wang
Language:英文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0089751011%22.
id ndltd-CHENGCHI-G0089751011
record_format oai_dc
spelling ndltd-CHENGCHI-G00897510112013-01-07T19:27:11Z Combinatorial Argument of Partition with Point, Line, and Space 點線面與空間分割的組合論證法 王佑欣 Yuhsin Wang Recurrence Relation Difference Equation Euler's Formula Standard Partition System of n-Dimensional Partitioner n-dimensional space Combinatorial Argument Algorithm Bounded Region Unbounded Region 在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。 In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler's Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0089751011%22. text 英文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 英文
sources NDLTD
topic Recurrence Relation
Difference Equation
Euler's Formula
Standard Partition System of n-Dimensional
Partitioner
n-dimensional space
Combinatorial Argument
Algorithm
Bounded Region
Unbounded Region
spellingShingle Recurrence Relation
Difference Equation
Euler's Formula
Standard Partition System of n-Dimensional
Partitioner
n-dimensional space
Combinatorial Argument
Algorithm
Bounded Region
Unbounded Region
王佑欣
Yuhsin Wang
Combinatorial Argument of Partition with Point, Line, and Space
description 在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。 === In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler's Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions.
author 王佑欣
Yuhsin Wang
author_facet 王佑欣
Yuhsin Wang
author_sort 王佑欣
title Combinatorial Argument of Partition with Point, Line, and Space
title_short Combinatorial Argument of Partition with Point, Line, and Space
title_full Combinatorial Argument of Partition with Point, Line, and Space
title_fullStr Combinatorial Argument of Partition with Point, Line, and Space
title_full_unstemmed Combinatorial Argument of Partition with Point, Line, and Space
title_sort combinatorial argument of partition with point, line, and space
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0089751011%22.
work_keys_str_mv AT wángyòuxīn combinatorialargumentofpartitionwithpointlineandspace
AT yuhsinwang combinatorialargumentofpartitionwithpointlineandspace
AT wángyòuxīn diǎnxiànmiànyǔkōngjiānfēngēdezǔhélùnzhèngfǎ
AT yuhsinwang diǎnxiànmiànyǔkōngjiānfēngēdezǔhélùnzhèngfǎ
_version_ 1716462181960122368