時間數列分析在偵測型態結構差異上之探討

依時間順序出現之一連串觀測值,通常會呈現某一型態,而根據所產生的 型態可以作為判斷事件發生的基礎。例如,震波形成原因的判斷﹔追查環 境污染源﹔以及在醫學方面,辨識一個正常人心電圖的型態與患有心臟病 的病人其心電圖的型態…等。對於這些問題,傳統之辨識方法常因前提假 設的限制而失去其準確性。在本文中,我們應用神經網路中的逆向傳播演 算法則來訓練網路,並利用此受過訓練的網路來辨別線性時間數列ARIMA 及非線性時間數列 BL(1,0,1,1)。結果發現,網路對於模擬資料中雙線性 係數介於0.2至$0.8$之間的資料有高達$80\%$以上的辨識能力。而在實例 研究中,我們訓練網路來判斷震波形成的原因,...

Full description

Bibliographic Details
Main Authors: 蘇曉楓, Su, Shiau Feng
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002004195%22.
id ndltd-CHENGCHI-B2002004195
record_format oai_dc
spelling ndltd-CHENGCHI-B20020041952013-01-07T19:23:52Z 時間數列分析在偵測型態結構差異上之探討 Application Of Time Series Analysis In Pattern Recgnition And alysis 蘇曉楓 Su, Shiau Feng 非線性時間數列模式 神經網路 穩健性 模型辨識 時間數列分析 nonlinear time series neural time series analysis 依時間順序出現之一連串觀測值,通常會呈現某一型態,而根據所產生的 型態可以作為判斷事件發生的基礎。例如,震波形成原因的判斷﹔追查環 境污染源﹔以及在醫學方面,辨識一個正常人心電圖的型態與患有心臟病 的病人其心電圖的型態…等。對於這些問題,傳統之辨識方法常因前提假 設的限制而失去其準確性。在本文中,我們應用神經網路中的逆向傳播演 算法則來訓練網路,並利用此受過訓練的網路來辨別線性時間數列ARIMA 及非線性時間數列 BL(1,0,1,1)。結果發現,網路對於模擬資料中雙線性 係數介於0.2至$0.8$之間的資料有高達$80\%$以上的辨識能力。而在實例 研究中,我們訓練網路來判斷震波形成的原因,其正確率亦高達80\%以上 。同時,我們也將神經網路應用在環境保護方面,訓練網路來判斷二地區 空氣品質的型態。 A series of observations indexed in time often produces a pattern that may form a basis for discriminatingetween different classes of events. For instance, in theeology, what are the causes of seismic waves? a earthquakesr the nuclear explosions ?in the eathenics, we can use theethod to inquire the source which pollutes the air in somelace, and in the medicine, to distinguish the difference oflectrocardiograms between a health person and an a patient..ect. In this paper, we utilize the back-propagation to trainnetwork and use of the trained networks to judge the linearRIMA(1,0,0) model between the nonlinear BIL(1,0,1,1) model,e can find that the trained network has a good recognitionhose accurate rate is above 80\% for the coefficient of the bilinear model being equal to 0.5 or 0.8. In a living example, we have trained a network to decidehich is the cause of seismic wave, and the trained networkhose accurate rate is larger than 80\%. At the same time, e also applied neural network in environmental protection. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002004195%22. text 中文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 中文
sources NDLTD
topic 非線性時間數列模式
神經網路
穩健性
模型辨識
時間數列分析
nonlinear time series
neural
time series analysis
spellingShingle 非線性時間數列模式
神經網路
穩健性
模型辨識
時間數列分析
nonlinear time series
neural
time series analysis
蘇曉楓
Su, Shiau Feng
時間數列分析在偵測型態結構差異上之探討
description 依時間順序出現之一連串觀測值,通常會呈現某一型態,而根據所產生的 型態可以作為判斷事件發生的基礎。例如,震波形成原因的判斷﹔追查環 境污染源﹔以及在醫學方面,辨識一個正常人心電圖的型態與患有心臟病 的病人其心電圖的型態…等。對於這些問題,傳統之辨識方法常因前提假 設的限制而失去其準確性。在本文中,我們應用神經網路中的逆向傳播演 算法則來訓練網路,並利用此受過訓練的網路來辨別線性時間數列ARIMA 及非線性時間數列 BL(1,0,1,1)。結果發現,網路對於模擬資料中雙線性 係數介於0.2至$0.8$之間的資料有高達$80\%$以上的辨識能力。而在實例 研究中,我們訓練網路來判斷震波形成的原因,其正確率亦高達80\%以上 。同時,我們也將神經網路應用在環境保護方面,訓練網路來判斷二地區 空氣品質的型態。 === A series of observations indexed in time often produces a pattern that may form a basis for discriminatingetween different classes of events. For instance, in theeology, what are the causes of seismic waves? a earthquakesr the nuclear explosions ?in the eathenics, we can use theethod to inquire the source which pollutes the air in somelace, and in the medicine, to distinguish the difference oflectrocardiograms between a health person and an a patient..ect. In this paper, we utilize the back-propagation to trainnetwork and use of the trained networks to judge the linearRIMA(1,0,0) model between the nonlinear BIL(1,0,1,1) model,e can find that the trained network has a good recognitionhose accurate rate is above 80\% for the coefficient of the bilinear model being equal to 0.5 or 0.8. In a living example, we have trained a network to decidehich is the cause of seismic wave, and the trained networkhose accurate rate is larger than 80\%. At the same time, e also applied neural network in environmental protection.
author 蘇曉楓
Su, Shiau Feng
author_facet 蘇曉楓
Su, Shiau Feng
author_sort 蘇曉楓
title 時間數列分析在偵測型態結構差異上之探討
title_short 時間數列分析在偵測型態結構差異上之探討
title_full 時間數列分析在偵測型態結構差異上之探討
title_fullStr 時間數列分析在偵測型態結構差異上之探討
title_full_unstemmed 時間數列分析在偵測型態結構差異上之探討
title_sort 時間數列分析在偵測型態結構差異上之探討
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002004195%22.
work_keys_str_mv AT sūxiǎofēng shíjiānshùlièfēnxīzàizhēncèxíngtàijiégòuchàyìshàngzhītàntǎo
AT sushiaufeng shíjiānshùlièfēnxīzàizhēncèxíngtàijiégòuchàyìshàngzhītàntǎo
AT sūxiǎofēng applicationoftimeseriesanalysisinpatternrecgnitionandalysis
AT sushiaufeng applicationoftimeseriesanalysisinpatternrecgnitionandalysis
_version_ 1716459155661783040