在複n維歐氏空間中有關凸域之不變度量與測度

  本文中我們將證明Kobayashi擬度量在凸域中的三角不等式成立,任一C<sup>n</sup>中不包含複仿射線之凸域皆可解析嵌入n維單位多重圓板,在凸域中的Carathéodory距離函數產生原來的拓樸以及在凸域中的hyperbolicity和measure hyperbolicity是等價的概念,進而推論到任一體積有限的凸域必須是hyperbolic,因此,當然是measure hyperbolic。 ===   In this thesis , we prove that the triangle inequality of the Kobayashi ps...

Full description

Bibliographic Details
Main Authors: 林群根, Lin, Qun Gen
Language:英文
Published: 國立政治大學
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002003515%22.
Description
Summary:  本文中我們將證明Kobayashi擬度量在凸域中的三角不等式成立,任一C<sup>n</sup>中不包含複仿射線之凸域皆可解析嵌入n維單位多重圓板,在凸域中的Carathéodory距離函數產生原來的拓樸以及在凸域中的hyperbolicity和measure hyperbolicity是等價的概念,進而推論到任一體積有限的凸域必須是hyperbolic,因此,當然是measure hyperbolic。 ===   In this thesis , we prove that the triangle inequality of the Kobayashi pseudometric holds in any convex domain. Also , for a convex domain Q containing no complex affine line , we prove that Ω is biholomorphic to a subdomain of the unit polydisc D<sup>n</sup> and the topology induced by the Carathéodory distance function coincides with the Euclidean topology of Ω. Finally , we prove that hyperbolicity and measure hyperbolicity in a convex domain are equivalent. Moreover, any convex domain with finite Euclidean volume must be hyperbolic, therefore , it is measure hyperbolic.