線性羅吉斯迴歸模型的最佳D型逐次設計
假設二元反應曲線為簡單線性羅吉斯迴歸模型(Simple Linear Logistic Regression Model),在樣本數為偶數的前題下,所謂的最佳D型設計(D-Optimal Design)是直接將半數的樣本點配置在第17.6個百分位數,而另一半則配置在第82.4個百分位數。很遺憾的是,這兩個位置在參數未知的情況下是無法決定的,因此逐次實驗設計法(Sequential Experimental Designs)在應用上就有其必要性。在大樣本的情況下,本文所探討的逐次實驗設計法在理論上具有良好的漸近最佳D型性質(Asymptotic D-Optimality)。尤其重要的是,這些...
Main Authors: | , |
---|---|
Language: | 中文 |
Published: |
國立政治大學
|
Subjects: | |
Online Access: | http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002003392%22. |
id |
ndltd-CHENGCHI-B2002003392 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CHENGCHI-B20020033922013-01-07T19:23:16Z 線性羅吉斯迴歸模型的最佳D型逐次設計 The D-optimal sequential design for linear logistic regression model 藍旭傑 Lan, Shiuh Jay 最佳D型設計 Fisher資訊矩陣 線性羅吉斯迴歸模型 逐次實驗設計 D-optimal design Fisher information matrix Linear logistic regression model Sequential experimental 假設二元反應曲線為簡單線性羅吉斯迴歸模型(Simple Linear Logistic Regression Model),在樣本數為偶數的前題下,所謂的最佳D型設計(D-Optimal Design)是直接將半數的樣本點配置在第17.6個百分位數,而另一半則配置在第82.4個百分位數。很遺憾的是,這兩個位置在參數未知的情況下是無法決定的,因此逐次實驗設計法(Sequential Experimental Designs)在應用上就有其必要性。在大樣本的情況下,本文所探討的逐次實驗設計法在理論上具有良好的漸近最佳D型性質(Asymptotic D-Optimality)。尤其重要的是,這些特性並不會因為起始階段的配置不盡理想而消失,影響的只是收斂的快慢而已。但是在實際應用上,這些大樣本的理想性質卻不是我們關注的焦點。實驗步驟收斂速度的快慢,在小樣本的考慮下有決定性的重要性。基於這樣的考量,本文將提出三種起始階段設計的方法並透過模擬比較它們之間的優劣性。 The D-optimal design is well known to be a two-point design for the simple linear logistic regression function model. Specif-ically , one half of the design points are allocated at the 17.6- th percentile, and the other half at the 82.4-th percentile. Since the locations of the two design points depend on the unknown parameters, the actual 2-locations can not be obtained. In order to dilemma, a sequential design is somehow necessary in practice. Sequential designs disscused in this context have some good properties that would not disappear even the initial stgae is not good enough under large sample size. The speed of converges of the sequential designs is influenced by the initial stage imposed under small sample size. Based on this, three initial stages will be provided in this study and will be compared through simulation conducted by C++ language. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002003392%22. text 中文 Copyright © nccu library on behalf of the copyright holders |
collection |
NDLTD |
language |
中文 |
sources |
NDLTD |
topic |
最佳D型設計 Fisher資訊矩陣 線性羅吉斯迴歸模型 逐次實驗設計 D-optimal design Fisher information matrix Linear logistic regression model Sequential experimental |
spellingShingle |
最佳D型設計 Fisher資訊矩陣 線性羅吉斯迴歸模型 逐次實驗設計 D-optimal design Fisher information matrix Linear logistic regression model Sequential experimental 藍旭傑 Lan, Shiuh Jay 線性羅吉斯迴歸模型的最佳D型逐次設計 |
description |
假設二元反應曲線為簡單線性羅吉斯迴歸模型(Simple Linear Logistic Regression Model),在樣本數為偶數的前題下,所謂的最佳D型設計(D-Optimal Design)是直接將半數的樣本點配置在第17.6個百分位數,而另一半則配置在第82.4個百分位數。很遺憾的是,這兩個位置在參數未知的情況下是無法決定的,因此逐次實驗設計法(Sequential Experimental Designs)在應用上就有其必要性。在大樣本的情況下,本文所探討的逐次實驗設計法在理論上具有良好的漸近最佳D型性質(Asymptotic D-Optimality)。尤其重要的是,這些特性並不會因為起始階段的配置不盡理想而消失,影響的只是收斂的快慢而已。但是在實際應用上,這些大樣本的理想性質卻不是我們關注的焦點。實驗步驟收斂速度的快慢,在小樣本的考慮下有決定性的重要性。基於這樣的考量,本文將提出三種起始階段設計的方法並透過模擬比較它們之間的優劣性。
=== The D-optimal design is well known to be a two-point design for the simple linear logistic regression function model. Specif-ically , one half of the design points are allocated at the 17.6- th percentile, and the other half at the 82.4-th percentile. Since the locations of the two design points depend on the unknown parameters, the actual 2-locations can not be obtained. In order to dilemma, a sequential design is somehow necessary in practice. Sequential designs disscused in this context have some good properties that would not disappear even the initial stgae is not good enough under large sample size. The speed of converges of the sequential designs is influenced by the initial stage imposed under small sample size. Based on this, three initial stages will be provided in this study and will be compared through simulation conducted by C++ language.
|
author |
藍旭傑 Lan, Shiuh Jay |
author_facet |
藍旭傑 Lan, Shiuh Jay |
author_sort |
藍旭傑 |
title |
線性羅吉斯迴歸模型的最佳D型逐次設計 |
title_short |
線性羅吉斯迴歸模型的最佳D型逐次設計 |
title_full |
線性羅吉斯迴歸模型的最佳D型逐次設計 |
title_fullStr |
線性羅吉斯迴歸模型的最佳D型逐次設計 |
title_full_unstemmed |
線性羅吉斯迴歸模型的最佳D型逐次設計 |
title_sort |
線性羅吉斯迴歸模型的最佳d型逐次設計 |
publisher |
國立政治大學 |
url |
http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002003392%22. |
work_keys_str_mv |
AT lánxùjié xiànxìngluójísīhuíguīmóxíngdezuìjiādxíngzhúcìshèjì AT lanshiuhjay xiànxìngluójísīhuíguīmóxíngdezuìjiādxíngzhúcìshèjì AT lánxùjié thedoptimalsequentialdesignforlinearlogisticregressionmodel AT lanshiuhjay thedoptimalsequentialdesignforlinearlogisticregressionmodel |
_version_ |
1716458740708802560 |